欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(86460)
  • 图书()
  • 专利()
  • 新闻()

STUDY ON THE THREESTAGE CREEP OF THE DD3SINGLE CRYSTAL SUPERALLOY

Author X.A. Zhang1) , H.Q. Xia1) , Z.T. Wu1) , Y.F. Han1) , R. Shi2) and G.X. Hu2) \= 1) Mechanical Properties Laboratory , Beijing Institute of Aeronautical Materials , Beijing 100095 , China2) The State Education Commission Open Research Laboratory for High Temperature

金属学报(英文版)

Materials and Testing, Shanghai Jiao Tong University, Shanghai 200030, ChinaManuscript received 18 October 1998 The threestage creep behavior of DD3 single crystal superalloy had been studied. The results show that the creeprupture properties of DD3 single crystal satisfy the requirements for high performance turbine blade application. The influence of crystal orientation on the creeprupture property of DD3 single crystal was tested and discussed. An engineering criterion to evaluate the regimes of secondary and tertiary creep is proposed, and this method gives a reasonable result for practical applications. The fractography and TEM micrography of the tested specimens had been studied, and it is determined that the glidecontrolled creep is the basic creep mechanism of DD3 single crystal at intermediate temperature, but the thermally activated processes become dominant at higher temperature.

关键词: threestage creep curve , null , null , null

Recent developments in high temperature intermetallics research in China

Intermetallics

A comprehensive survey was made of various advances of intermetallics research in China. The investigation focussed on the fundamental research and materials development. Charge density distribution and site occupancy of alloying elements, environmental embrittlement and chemical reaction, interface structures and phase transformation at the atomic scale, nanocrystalline intermetallics and its thermal stability, superplastic behavior and anomalous yield strength peak are reviewed. Several Ti-Al and Ni-Al based alloys have been manufactured, and show good mechanical properties. Diverse components have been fabricated successfully. (C) 2000 Elsevier Science Ltd. All rights reserved.

关键词: aluminides, miscellaneous;hydrogen embrittlement;mechanical properties;at high temperatures;superplastic behavior;phase interfaces;grain-boundary fracture;in-situ composites;environmental;embrittlement;hydrogen embrittlement;ni3al;compression;alloys;co3ti;boron;feal

RESEARCH AND DEVELOPMENT OF HIGH TEMPERATURE STRUCTURAL MATERIALS FOR AERO-ENGINE APPLICATIONS

G.Q. Zhang

金属学报(英文版)

The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superalloys for aero-engine disks and rings, and powder metallurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.

关键词: superalloy , null , null

Salt-assisted Low Temperature Solid State Synthesis of High Surface Area CoFe2O4 Nanoparticles

Runhua Qin

材料科学技术(英文)

A novel salt-assisted low temperature solid state method using CoCl2?6H2O, FeCl3?6H2O and NaOH as pre- cursor and using NaCl as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m2/g, and the saturation magnetization is 84.6 emu/g.

关键词: Low temperature solid state reaction , 盐助 , 钴铁氧体 , 纳米粒子

Introduction to atmospheric corrosion research in China

Science and Technology of Advanced Materials

In this paper, we introduce the research on atmospheric corrosion in China. We describe the climate characteristics and the classification of atmospheric corrosivity across the whole country. We also describe the rusting evolution under simulated wet/dry cyclic conditions. (C) 2007 NIMS and Elsevier Ltd. All rights reserved.

关键词: atmospheric corrosion;corrosivity;rusting evolution;weathering steels;rust;mechanism;so2;o-3;no2

Porous CuO-ZnO nanocomposite for sensing electrode of high-temperature CO solid-state electrochemical sensor

Nanotechnology

A highly porous and nanostructured CuO-ZnO composite has been synthesized for the sensing electrode of a solid-state electrochemical sensor for the high-temperature detection of carbon monoxide. The sensing electrode is made of ZnO nanotetrapod supported CuO nanoparticles. The ZnO nanotetrapods form a three-dimensional interconnected network, leading to a highly porous electrode. The ZnO nanotetrapods on which the CuO nanoparticles are highly dispersedly supported have a high surface-to-volume ratio while maintaining thermal stability at high temperature. Our approach provides an inexpensive route for large-scale production of porous and nanostructured electrodes, which increases the sensitivity of solid-state electrochemical sensors for on-line gas detection at high temperature.

关键词: carbon-monoxide oxidation;zinc oxide catalysts;gas sensors;methanol

THE MECHANICAL BEHAVIOR OF LABORATORY CROSS-WELD SPECIMEN AND ITS RELATION WITH THE PRACTICAL CASES AT ELEVATED TEMPERATURE

Author S.T. TU , J.M. Gong and X. Ling Nanjing University of Chemical Technology , Nanjing 210009 , ChinaManuscript received 18 October 1998

金属学报(英文版)

In order to interpret the test results of crossweld specimens for application in practical welded components, the present paper studies the high temperature behavior of laboratory cross weld specimens in terms of the uniaxial material tests and numerical simulations. It is found that the crossweld specimen may be used for the high temperature strength assessment, but can hardly be used for life assessment of the practical welded components, which depends on the loading conditions of the components.

关键词: high temperature , null , null , null , null

Structure characteristics and valence state study for La1-xNaxTiO3 synthesized under high-pressure and high-temperature conditions

Materials Letters

By using a novel high-pressure, high-temperature method, perovskite oxides of La1-xNaxTiO3 (x = 0.05, 0.1-0.8) with mixed valence state were synthesized. XRD analysis shows a cubic cell for the samples. Cell volumes of the samples with 0.1 less than or equal to x less than or equal to 0.5 decreases as x increases, and the cell Volume for x = 0.05 is smaller than that for x = 0.1. XPS of surface and EPR measurements indicate that Ti ions are of mixed valence of +3 and +4 and that A-cations vacancies exist in the samples. As x increases, the amount of Ti3+ ions decreases and the amount of A-cations vacancies increases. The valence state of Ti ions can be altered by changing both pressure and temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

关键词: high-pressure and high-temperature synthesis;XPS;EPR;mixed valence;oxides;electrical-properties

Key R&D activities for development of new types of wrought magnesium alloys in China

Transactions of Nonferrous Metals Society of China

Many researchers in China are actively engaged in the development of new types of wrought magnesium alloys with low cost or with high-performances and novel plastic processing technologies. The research activities are funded primarily through four government-supported programs: the Key Technologies R&D Program of China, the National Basic Research Program of China, the National High-tech R&D Program of China, and the National Natural Science Foundation of China. The key R&D activities for the development of new wrought magnesium alloys in China are reviewed, and typical properties of some new alloys are summarized. More attentions are paid to high-strength wrought magnesium alloys and high-plasticity wrought magnesium alloys. Some novel plastic processing technologies, emerging in recent years, which aim to control deformation texture and to improve plasticity and formability especially at room temperature, are also introduced.

关键词: wrought magnesium alloy;microstructure;properties;alloy designing;plastic deformation;research projects;y-zr alloys;mechanical-properties;mg-4y-4sm-0.5zr alloy;grain-refinement;rare-earth;microstructure;gd;phase;temperature;evolution

Solid state reaction of Mg with Ni under high pressure

High Pressure Research

Solid state reaction of Mg with Ni was processed under static high pressure and nanocrystalline Mg2Ni was obtained. An unknown phase was also formed at lower temperature. The relation between the mean grain size of Mg2Ni and the synthetizing pressure is given, and its mechanism is discussed.

关键词: solid state reaction;high pressure;nanocrystalline;Mg2Ni;mean grain;size;unknown phase;ab(2)-type intermetallic compounds;crystal-structure

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共8646页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词