欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(4800)
  • 图书()
  • 专利()
  • 新闻()

R&D STATUS ON INTERMETALLICS IN CHINA

CHEN Guoliang(State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 , China)SHI Changxu (Academia Sinica , Beijing 100864 , China)

金属学报(英文版)

This paper briefiy introduces the R&D of intermetallics in China. R&D on intermetallics in a national scale in China began near ten years ago. The investigation in past years focused on the fundamental research and materials development. A significant progress has been made. Various components that made of Ti3Al Ni3Al, TiAl and Fe3Al have been successfully manufactured Some of them have been evaluted. It is expected that some intermetallic alloys will be produced in an industrial scale in the near future.

关键词: :intermetallic alloys , null , null , null

CORRELATION BETWEEN STRESS COMPONENTS AND STRESS CORROSION CRACKS IN BRASS Lecturer,Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China

QIAO Lijie LIU Rui XIAO Jimei University of Science and Technology Beijing , Beijing , China

金属学报(英文版)

The effects of stress components on nucleation sites and propagation directions of stress cor- rosion cracks in brass were investigated with specimens under mode Ⅱ and mode Ⅲ loadings. The results indicated that under mode Ⅱ loading,stress corrosion cracks nucleated on the site with maximum normal stress component and propagated along the plane perpendieular to the maximum normal stress,under mode Ⅲ loading,the stress corrosion crack was not evident on the 45°plane due to the general corrosion in aqueous solution with high NH_4OH concentra- tion,while stress corroded in aqueous solution with low NH_4OH concentration, numerous cracks with spacings of 10—150μm were found on the 45°plane with maximum normal stress and no stress corrosion cracks was observed on the plane with maximum shear stress.

关键词: stress corrosion cracking , null , null , null

Advanced Materials for Energy Storage

Advanced Materials

Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

关键词: lithium-ion batteries;carbon nanotube electrodes;enhanced hydrogen;storage;metal-organic frameworks;double-layer capacitors;n-h system;carbide-derived carbons;ammonia borane dehydrogenation;ordered;mesoporous carbons;high-rate performance

ADVANCED SYNTHESIS OF LIGHT METALS

F.H. Froes(IMAP , University of Idaho , Moscow , ID 838443026 , USA Manuscript received 26 August 1996)

金属学报(英文版)

The synthesis, processing and mechanical properties of the light metals, aluminum,magnesium and titanium Produced by advanced techniques are reviewed. Synthesis techniques to be addressed will include rapid solidification, spray deposition, mechanical alloying, plasma Processing and vapor deposition.

关键词: :synthesis/processing , null , null , null , null , null , null , null , null , null , null

Stereology in Materials Science

LIU Guoquan Department of Materials Science and Engineering , University of Science and Technology Beijing , 100083 , China.

材料科学技术(英)

Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.

关键词: stereology , null , null , null

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共480页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词