Benlian ZHOU International Centre for Materials Physics
,
Institute of Metal Research
,
Academia Sinica
,
Shenyang
,
110015
,
China
材料科学技术(英文)
A series of superior properties will make composites the most important structural materials in the next century.But they are difficult to design owing to the complexity of structure and processing. Biomaterials had been naturally selected and evolved for millions of years,a great variety of their ra- tional composite structures could be taken as our reference in the biomimetic design of composite materials.There are many difficult problems in the current study on composite materials such as: brittleness of continuous fibers and difficulties in interface design;easy pull-out of short fibers from matrix causing failure in reinforcing;being less easy in selecting the aspect ratio of whiskers and dif- ficulties in finding the way of toughening composites of ceramic matrices as well as the way of heal- ing inner damages.After describing the distinct composite features,the functional adaptability and self-healing ability of biomaterials,several examples o.f biomimetic design of composite materials have been listed in this paper:the optimum design of composites simulating bamboo structure;the fine structure of bamboo fibers;the dumb-bell model simulating animal bone;the model on the pull-out of fiber with fractal-tree structure and some tentative works on the healing of inner damage in composite materials The methodology of biomimetic design and its future have been given at the ast part of this paper.
关键词:
composite material
,
null
,
null
Douxing LI and Hengqiang YE (Laboratory of Atomic imaging of Solids
,
Institute of Metal Research
,
Chinese Academy of Sciences
,
Shenyang
,
110015
,
China)
材料科学技术(英文)
The present paper summarizes the current status of high resolution electron microscopy (HREM)and the applications of HREM to materials science and condensed matter physics. This review recounts the latest development of high resolution electron microscope, progress of HREM and the applications of HREM, including the crystal structure determination of microcrystalline materials and characterization of the local structure of the defects and nanostructured materials as well as qualitative and quantitative analysis of the grain boundaries, interfaces and interfacial reactions in the advanced materials by means of HREM in combination with electron diffraction,subnanometer level analysis, image simulation and image processing.
关键词: