Author N. Wang
,
B.S. Zhou
,
Z.D. Wang and D.D. Wu College of Mechanical Engineering
,
East China University of Science and Technology
,
Shanghai 200237
,
ChinaManuscript received 18 October 1998
金属学报(英文版)
Based on the fundamental definition of damage and inelastic strain energy hypothesis, this paper presents an inelastic strain energy damage model under creepfatigue interaction condition, with the damage constitutional equations and life prediction formulae respectively described by strain and stress. Creepfatigue tests with notchedbar specimens were carried out at 550. The actual creepfatigue lives are in good agreement to the predicted lives according to inelastic strain energy damage model.
关键词:
damage mechanics
,
null
,
null
,
null
Physical Review B
By use of the linear-combination-of-atomic-orbital (LCAO) method for a cluster model, we studied the electronic structure of gamma-from Sigma 11 [1 (1) over bar0](11 (3) over bar) grain boundary doping with N and Mn atoms. The effect of the segregation on the cohesion of the grain boundary is investigated based on the Rice-Wang thermodynamic model. It is found that N could not only largely enhance the cohesion of the grain boundary but also eliminate the detrimental effect of Mn. The cosegregation effect of Mn and N on the cohesion of the grain boundary depends on where they segregate. Nitrogen could be reliably used in alloyed steels as an efficient strengthening element.
关键词:
electronic-structure;phosphorus segregation;stainless-steel;embrittlement;austenite;nitrogen;boron;impurities;fracture;metals