{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"首先用乳液聚合法得到聚苯乙烯丙烯腈共聚物改性的蒙脱土,然后利用蒙脱土片层上的羟基和聚合物链上的极性官能团负载茂金属催化剂并通过原位聚合法制得聚乙烯/蒙脱土(PE/MMT)纳米复合材料.XRD和TEM电镜分析结果表明蒙脱土在聚乙烯基体中呈纳米级分散.DSC分析结果表明,复合材料的熔点比纯PE高2 ℃~5 ℃,DMA分析结果表明,复合材料的储能模量较纯聚乙烯有较大辐度的增长.","authors":[{"authorName":"赵海超","id":"ed95c9b2-0e52-45d0-b27f-81b948f264f3","originalAuthorName":"赵海超"},{"authorName":"杨凤","id":"96d8070c-27b7-4820-8a49-59e2bf495ec9","originalAuthorName":"杨凤"},{"authorName":"张学全","id":"caaa499b-7bb0-49ce-aeab-a878957693b9","originalAuthorName":"张学全"},{"authorName":"李刚","id":"6fed2cf1-97e1-4354-a187-39e9b2a0ce9a","originalAuthorName":"李刚"},{"authorName":"蔡洪光","id":"929ac66b-647f-4339-a032-20b7ec067f06","originalAuthorName":"蔡洪光"},{"authorName":"陈斌","id":"ffb2eb25-a2ce-453e-9579-54b9e7f2bca9","originalAuthorName":"陈斌"},{"authorName":"冯之榴","id":"0ca14816-d086-404b-8bff-e4b95cdfa5e0","originalAuthorName":"冯之榴"},{"authorName":"黄葆同","id":"edde1307-41b7-47c5-bbee-0ca752994608","originalAuthorName":"黄葆同"}],"doi":"","fpage":"63","id":"545de278-b85c-4c7a-bca0-f03237cfeb84","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"29839234-5e9b-4beb-9e76-e850814daeb5","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"d1179b34-3fc8-49a3-8f70-9c4280a9ce5b","keyword":"蒙脱土","originalKeyword":"蒙脱土"},{"id":"75d8caa5-9880-47d7-be82-b1143d47fcfa","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"}],"language":"zh","publisherId":"gfzclkxygc200405015","title":"原位聚合制备聚乙烯/蒙脱土纳米复合材料","volume":"20","year":"2004"},{"abstractinfo":"首先制备MMT/MgCl2/TiCl4插层催化剂,并通过原位聚合的方法制得聚丙烯(PP)/蒙脱土(MMT)纳米复合材料.XRD和TEM分析结果表明,蒙脱土在聚丙烯基体中被剥离并成纳米级分散.在低于80 ℃左右时,PP/MMT纳米复合材料的储能模量明显高于纯聚丙烯的储能模量,PP/MMT复合材料的玻璃化温度比纯PP提高了2 ℃~5 ℃.","authors":[{"authorName":"赵海超","id":"22ff857f-8ee2-453c-9bf9-e7f01aeede72","originalAuthorName":"赵海超"},{"authorName":"杨凤","id":"cd869aca-828b-4c70-aa7b-545a389c91e8","originalAuthorName":"杨凤"},{"authorName":"张学全","id":"e6cb6c62-7cf0-4b20-a7ad-0224f0c499c5","originalAuthorName":"张学全"},{"authorName":"陈斌","id":"de5df097-fba9-4012-841a-886146f85f56","originalAuthorName":"陈斌"},{"authorName":"李刚","id":"109aa3d5-a804-4bc2-afdc-0e0caab0a8ea","originalAuthorName":"李刚"},{"authorName":"蔡洪光","id":"d57c283f-a56b-4883-a249-4a6d41fa9339","originalAuthorName":"蔡洪光"},{"authorName":"冯之榴","id":"356f7c74-ad80-49f1-a1b8-3fbd4fd0236d","originalAuthorName":"冯之榴"},{"authorName":"黄葆同","id":"c9e833e3-d60c-4c95-98d4-83ac1dd02bba","originalAuthorName":"黄葆同"}],"doi":"","fpage":"185","id":"da547e36-fc52-4d1c-a544-80d41fed71b2","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"39fdfa3d-ad5f-4df0-8467-5f1b3f86e15b","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"974f478e-1f5e-46fd-b87b-ffbfb867435e","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"0de26257-1e0c-44ec-88fc-19e5f2c3098a","keyword":"蒙脱土","originalKeyword":"蒙脱土"},{"id":"1b56ef0a-83ee-45f2-9cda-34f8e61cac70","keyword":"原位聚合","originalKeyword":"原位聚合"}],"language":"zh","publisherId":"gfzclkxygc200402049","title":"原位聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征","volume":"20","year":"2004"},{"abstractinfo":"利用三维荧光光谱和紫外-可见光谱技术,通过室内模拟实验研究了光照对洱海上覆水溶解性有机氮(DON)影响,经平行因子分析法(PARAFAC)和荧光区域积分法(FRI)解析了DON含量、结构组分变化特征,并探讨了其环境学意义.结果表明:(1)未加汞光照条件下,洱海上覆水DON含量随光照时间延长呈波动上升趋势,NH4+与DON含量呈显著负相关(R2=0.94,P<0.05),即NH4与DON之间存在相互转化,且光照可能促进了NH4向DON的转化;(2)加HgCl2后实验组与对照组SUVA254(1.78、1.85)、A253/A203(0.35、0.34)、E2/ E3(5.85、5.77)及SR(1.03、1.14)均值差别不大,未加HgCl2实验组较对照组SUVA254、A253/A203、Ez/E3值有一定差别,表明光照主要是通过微生物作用,进而影响DON特征,表现为光照增强了DON芳香环取代基结构的复杂程度,并且使得羰基、羧基、羟基和酯基种类有所增多;(3) PARAFAC识别出类蛋白质物质(T峰)和类富里酸物质(A峰)两类组分,表明腐殖质类物质与蛋白质类物质之间可能存在相互转化,且微生物所发挥的作用较为明显.以上结果表明,光照可增强生物活性,进而影响对DON的转化和降解.","authors":[{"authorName":"李秋材","id":"ea478734-3e1a-4955-b38f-f38a24e1b3c9","originalAuthorName":"李秋材"},{"authorName":"张莉","id":"a154910e-b213-4fc4-ab69-84ebafb262dc","originalAuthorName":"张莉"},{"authorName":"王圣瑞","id":"d43348d6-38c6-4395-8f95-282b5c01edad","originalAuthorName":"王圣瑞"},{"authorName":"曹长春","id":"bc56433f-af30-4b5c-8a7d-65e89a5ae573","originalAuthorName":"曹长春"},{"authorName":"赵海超","id":"bdb53023-e137-4f46-97fd-f3783b6e22b7","originalAuthorName":"赵海超"},{"authorName":"李艳平","id":"d6864ba7-d603-4e9a-a612-903108d02b0a","originalAuthorName":"李艳平"},{"authorName":"李文章","id":"d955cf85-bb44-45f8-8237-4aeb682bf390","originalAuthorName":"李文章"},{"authorName":"席银","id":"45b8fb44-1495-4f37-b42f-75774da85dd4","originalAuthorName":"席银"}],"doi":"10.7524/j.issn.0254-6108.2017.03.2016081501","fpage":"521","id":"4522cadc-749a-4f7e-b443-56b0e08c551a","issue":"3","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"7f192ef8-6554-4f53-9006-9d8d11a33ee1","keyword":"光照","originalKeyword":"光照"},{"id":"b9ff213e-2e4f-42ef-95d4-c815dd6dc75f","keyword":"上覆水","originalKeyword":"上覆水"},{"id":"63982caa-a266-4c29-9f8c-752caae9fd52","keyword":"DON特征","originalKeyword":"DON特征"},{"id":"ad4cce44-7214-4b59-84d9-bdc00db095e7","keyword":"平行因子分析","originalKeyword":"平行因子分析"},{"id":"f4ab044e-1768-4774-baba-346b0d041659","keyword":"荧光区域积分","originalKeyword":"荧光区域积分"}],"language":"zh","publisherId":"hjhx201703008","title":"光照对湖泊上覆水DON影响机制及环境学意义","volume":"36","year":"2017"},{"abstractinfo":"石墨烯是一种新型二维层状结构的碳材料,具有高长径比及优异的疏水、导电、导热和化学稳定性能,使其在防腐涂料中具有广泛的应用前景.涂覆有机涂层具有施工简单、价格低廉、应用范围广和防护性能好等其它防护措施无法比拟的优点,是一种减缓金属腐蚀有效、经济的手段.有机涂层中添加一定量的功能颜填料,可明显增加涂层的致密性或拉伸强度,进而提高涂层对基底金属的防护性能.综述了石墨烯涂层和石墨烯复合涂层对金属防护性能的研究进展,重点探讨两种涂层体系的防护机理和失效衍化机制,总结分析石墨烯分散性能和石墨烯基涂层制备技术与其防护性能的构效关系,并指出石墨烯作为高性能防护材料仍需解决的问题及未来研究方向.","authors":[{"authorName":"刘栓","id":"b71d6d8e-9848-40d8-94cc-b83803d3a658","originalAuthorName":"刘栓"},{"authorName":"王春婷","id":"1c358cda-51e4-4e8c-b2f2-c18de3856c40","originalAuthorName":"王春婷"},{"authorName":"程庆利","id":"76c9f3e4-222e-48ea-9c83-dab775b3a0d6","originalAuthorName":"程庆利"},{"authorName":"赵霞","id":"066b8b16-6283-4c4e-8d5d-6b68e7e6a0b9","originalAuthorName":"赵霞"},{"authorName":"赵文杰","id":"ec0f08fb-bc74-474c-86f4-71b124fb2118","originalAuthorName":"赵文杰"},{"authorName":"赵海超","id":"8d342c29-bfe6-439c-9edf-f64dc5150224","originalAuthorName":"赵海超"},{"authorName":"郭小平","id":"8706c01d-b16a-458f-9f7c-17dca41e5ba9","originalAuthorName":"郭小平"},{"authorName":"陈建敏","id":"41cb7805-d953-4036-8087-ae699c0eb9b0","originalAuthorName":"陈建敏"}],"doi":"10.7502/j.issn.1674-3962.2017.05.08","fpage":"377","id":"3963d14a-26af-4de2-8209-9090d7c3fa90","issue":"5","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"c8122a2e-455b-40b7-b5aa-8548debe2b78","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"16ae5f05-769d-429a-8ce6-c21ff0a02398","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"bb977216-8b7d-43d4-b2ee-e260818f4ae2","keyword":"防护机理","originalKeyword":"防护机理"},{"id":"53db4e9b-a20f-49a0-aa0b-0056ce725b03","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"6a06bd00-1e75-42d4-b70a-ef025820697c","keyword":"失效","originalKeyword":"失效"}],"language":"zh","publisherId":"zgcljz201705008","title":"石墨烯基涂层防护性能的研究进展","volume":"36","year":"2017"},{"abstractinfo":"采用分散聚合法合成了水溶性聚苯胺(PANi)纳米粒子,并利用红外光谱、电子扫描电镜和激光粒度仪观察该聚合物的结构和粒径分布.采用极化曲线和电化学阻抗谱研究该水溶性聚苯胺纳米粒子对碳钢在1 mol/L HCl溶液中的缓蚀作用.结果表明:聚苯胺纳米粒子可在碳钢表面吸附成膜,从而有效降低其腐蚀速率,当缓蚀剂的质量浓度为0.5 g/L时,缓蚀率达到95.6%.","authors":[{"authorName":"马骏","id":"f0f863b3-d20d-4cd3-a0bc-04f98d02cbce","originalAuthorName":"马骏"},{"authorName":"刘栓","id":"e4e30c04-7cca-4d33-9e0e-ccdbba142115","originalAuthorName":"刘栓"},{"authorName":"赵海超","id":"60d36c62-ae70-46f4-854a-4ea847967530","originalAuthorName":"赵海超"},{"authorName":"陈斌","id":"f3cdcf33-9d6e-4bc9-93e3-9ca4120ba205","originalAuthorName":"陈斌"},{"authorName":"周开河","id":"88e59585-3a1d-4d15-afb0-43b83ed658ef","originalAuthorName":"周开河"},{"authorName":"方云辉","id":"fd59831a-985f-47c2-a210-a5de127f31dd","originalAuthorName":"方云辉"},{"authorName":"江炯","id":"d4a18913-3ca6-4f61-8dfd-6e678aefc01c","originalAuthorName":"江炯"}],"doi":"10.11973/fsyfh-201701007","fpage":"30","id":"bfc843de-8ce3-42b3-bd86-71a1ea8433e6","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"cd9fccf5-cc69-4ad9-9422-3681c50e69eb","keyword":"聚苯胺纳米粒子","originalKeyword":"聚苯胺纳米粒子"},{"id":"2e5b9021-7e64-4566-b28d-2b10be413f15","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"e0a1fc56-e0b1-4e35-b543-aba92bb6ce8e","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"f2f486af-2674-42c7-8160-5a1eb8015e59","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"}],"language":"zh","publisherId":"fsyfh201701007","title":"水溶性聚苯胺纳米粒子对碳钢的缓蚀作用","volume":"38","year":"2017"},{"abstractinfo":"综述了4种有机涂层/金属体系无损检测技术(包括交流阻抗谱、X射线检测、脉冲涡流检测和超声波检测)的基本原理、使用方法和研究进展,指出了有机涂层腐蚀检测方面目前存在的问题,展望了无损检测技术的发展趋势.","authors":[{"authorName":"刘栓","id":"6eb40090-d358-4390-965e-32dcea5341ca","originalAuthorName":"刘栓"},{"authorName":"赵海超","id":"46143699-7c06-4258-bee9-222cf8cac8f1","originalAuthorName":"赵海超"},{"authorName":"顾林","id":"2f8e197d-c412-4a51-aca3-14645d4670d7","originalAuthorName":"顾林"},{"authorName":"戴雷","id":"cc2986e6-932e-45a4-8527-b243b7e82819","originalAuthorName":"戴雷"},{"authorName":"陈建敏","id":"440af902-1aac-421d-9dfc-372d72b29afb","originalAuthorName":"陈建敏"},{"authorName":"余海斌","id":"7e86d7a8-2752-4941-9077-8e2cbf0015b0","originalAuthorName":"余海斌"}],"doi":"","fpage":"993","id":"63e440dd-720e-41be-b990-06a61b3fcdf3","issue":"22","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"82a7f1ed-f26b-4c5d-9cec-5d7a432e28f7","keyword":"金属","originalKeyword":"金属"},{"id":"209dcfea-5929-448d-89de-1b2b5a390084","keyword":"有机涂层","originalKeyword":"有机涂层"},{"id":"1151c4eb-542f-4b13-9ffc-1be3516bc191","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"0676b79c-f5c0-4f3e-aba0-f39edf232399","keyword":"无损检测","originalKeyword":"无损检测"}],"language":"zh","publisherId":"ddyts201422010","title":"有机涂层/金属腐蚀无损检测技术研究进展","volume":"33","year":"2014"},{"abstractinfo":"磷酸酯涂料涂层性能优良,但其传统制备工艺复杂.采用一步法通过双酚A环氧树脂E44和磷酸反应生成了环氧磷酸酯(P-E44),用三乙胺中和及水稀释制备了自乳化环氧磷酸酯乳液,再与水可分散异氰酸酯反应制备了环氧磷酸酯聚氨酯涂料,在Q235钢表面制备涂覆成膜,采用极化曲线和交流阻抗谱技术研究了环氧基团与磷酸摩尔比不同时,涂料涂层对Q235钢基体在3.5%NaCl溶液中的防护性能.结果表明:自乳化环氧磷酸酯聚氨酯对Q235钢的防护效果较好,当环氧基团和磷酸的摩尔比为3.0∶2.5时,涂层的防护性能较好.","authors":[{"authorName":"丁纪恒","id":"be89f446-08e6-4be6-a9df-b82ee7abb5cd","originalAuthorName":"丁纪恒"},{"authorName":"刘栓","id":"b7b70432-a3cc-4077-a131-3f6f633fa46a","originalAuthorName":"刘栓"},{"authorName":"顾林","id":"9f7faec9-3651-4b89-8819-008b40765ddc","originalAuthorName":"顾林"},{"authorName":"赵海超","id":"7729b546-b164-48dc-b644-2ca15bd8d92c","originalAuthorName":"赵海超"},{"authorName":"余海斌","id":"858581bd-d3f3-4ad8-b9ce-7361558e8176","originalAuthorName":"余海斌"}],"doi":"","fpage":"15","id":"cca74ccc-4452-4712-a4d4-c82250c758e0","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"dd435dd3-cf77-4323-b999-ed0ce9d6f4fe","keyword":"防腐蚀涂料","originalKeyword":"防腐蚀涂料"},{"id":"f066a1af-616c-4d20-8642-be343f8e2903","keyword":"自乳化环氧磷酸酯","originalKeyword":"自乳化环氧磷酸酯"},{"id":"3cb219a8-5827-4923-9de8-93277a1666fe","keyword":"涂层耐蚀性","originalKeyword":"涂层耐蚀性"},{"id":"395f748d-564f-46cd-8539-fce561165011","keyword":"Q235钢","originalKeyword":"Q235钢"}],"language":"zh","publisherId":"clbh201506005","title":"自乳化环氧磷酸酯聚氨酯防腐蚀涂料的制备及其耐蚀性能","volume":"48","year":"2015"},{"abstractinfo":"为探讨覆盖不同材料对湖泊沉积物磷释放控制机制,通过室内模拟试验,研究了覆盖FezO3、Al2O3、MnO2等3种氧化物及湖沙、蛭石对洱海沉积物磷释放特征、沉积物磷形态、金属形态及环境因子的影响.结果表明:(1)覆盖不同材料均抑制了沉积物磷释放,Fe组、Mn组、A1组、湖沙组和蛭石组沉积物中TP的Qm.分别减少了40.36%、32.07%、26.25%、11.62%和-7.83%.(2)覆盖材料主要是降低了沉积物中NH4C1-P、BD-P、NaOH-P的含量,其中覆盖金属氧化物降幅均高于湖沙和蛭石,覆盖Fe氧化物降低幅度最大,覆盖Mn氧化物对NaOH-P降幅较高.(3)覆盖材料通过影响Fe、A1、Mn及TOC在各磷形态中含量,进而控制磷的释放,其中Fe组沉积物BD-Fe和HCl-Fe含量分别增加了23.81%、110.76%,Mn组沉积物NH4C1-Mn增加110.76%,各组沉积物中NaOH-A1均向HCl-A1转化,且使沉积物TOC含量降低,进而增大沉积物w(TTOC/TP)、w(TFe/TP)、w(TMn/TP)、w(TAL/TP)比值,促进活性磷向惰性磷的转化.(4)覆盖材料通过影响沉积物pH和Eh值,进而影响金属离子形态,控制磷的释放.总体来看,覆盖金属氧化物控磷效果高于非金属无机材料,金属氧化物不仅具有吸附磷等物理作用,而且具有金属离子与磷结合转化磷形态含量的化学作用,进而控制沉积物磷释放,其中Fe氧化物控制效果最高.","authors":[{"authorName":"席银","id":"6b2600d2-7da3-4fb1-92fb-d469f9f1ffce","originalAuthorName":"席银"},{"authorName":"王圣瑞","id":"79e93352-f1d6-46b3-b5fc-3b58606a952e","originalAuthorName":"王圣瑞"},{"authorName":"赵海超","id":"7c97e921-35f3-407e-b2b0-ed6c6c5c950a","originalAuthorName":"赵海超"},{"authorName":"张莉","id":"8619b646-5ce0-45ce-ae48-5597fda033e1","originalAuthorName":"张莉"},{"authorName":"肖尚斌","id":"4eb85d83-ce8f-4a6e-b744-525f4baac812","originalAuthorName":"肖尚斌"}],"doi":"10.7524/j.issn.0254-6108.2017.03.2016080901","fpage":"532","id":"1c9ca186-df5c-474c-8857-d03439955175","issue":"3","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"15343911-4eb8-4d3a-b936-c10191e850f5","keyword":"覆盖材料","originalKeyword":"覆盖材料"},{"id":"f66d1906-8ffb-416b-8d64-c897ce0a2c7b","keyword":"理化因子","originalKeyword":"理化因子"},{"id":"a47dcbc1-64b8-497d-b6dc-d325455db616","keyword":"沉积物","originalKeyword":"沉积物"},{"id":"beef6b9f-0c0c-47f0-9f5f-f0fbc521b763","keyword":"磷释放","originalKeyword":"磷释放"},{"id":"3a4e6609-e824-48bc-a60d-f6bb6dcefed9","keyword":"磷形态","originalKeyword":"磷形态"}],"language":"zh","publisherId":"hjhx201703009","title":"覆盖不同材料对湖泊沉积物磷释放影响机制","volume":"36","year":"2017"},{"abstractinfo":"为了提高六方氮化硼在溶剂和有机涂层中的分散并探究其对环氧涂层耐蚀性能的影响,采用聚多巴胺(PDA)修饰六方氮化硼改善其在溶剂和环氧涂层中分散性的方法,通过SEM、TEM、XPS、Raman、TG表征了改性六方氮化硼的形貌、化学组成和热稳定性;除此之外,采用电化学方法研究了改性六方氮化硼掺入环氧复合涂层在3.5%NaCl溶液中的腐蚀行为.结果表明:与环氧涂层相比,h-BN@PDA/环氧复合涂层在长效腐蚀测试过程中表现出更正的腐蚀电位(-0.1 V)、高的阻抗模值和涂层阻抗值(~1010 Ω·cm2)、低的特征频率值(~0.1 Hz);且金属基底表面无明显腐蚀,显示优异的抗腐蚀性能.这主要是因为纳米层状六方氮化硼的添加可以降低涂层的孔隙率并且能够延缓腐蚀介质的渗入,进而提高了其耐腐蚀性能.","authors":[{"authorName":"任思明","id":"4c60365f-f9be-4dd1-9ed0-a86b485a0076","originalAuthorName":"任思明"},{"authorName":"崔明君","id":"10b80c89-5225-4005-b95a-0f4a4c28198b","originalAuthorName":"崔明君"},{"authorName":"赵海超","id":"9985a463-bd3a-41ae-aa0f-b6506a3a89ee","originalAuthorName":"赵海超"},{"authorName":"王立平","id":"f22335f7-a408-465a-961f-e5f9b0e82da6","originalAuthorName":"王立平"}],"doi":"10.11933/j.issn.1007-9289.20161222001","fpage":"98","id":"037ae44b-2f34-44d6-a861-a8131b06fb75","issue":"2","journal":{"abbrevTitle":"ZGBMGC","coverImgSrc":"journal/img/cover/ZGBMGC.jpg","id":"79","issnPpub":"1007-9289","publisherId":"ZGBMGC","title":"中国表面工程"},"keywords":[{"id":"c3e87896-d4dc-40ac-9541-2053f0535d17","keyword":"多巴胺","originalKeyword":"多巴胺"},{"id":"283a6143-e6d8-4412-af58-fa17cffd6bab","keyword":"六方氮化硼","originalKeyword":"六方氮化硼"},{"id":"237535f0-94f5-4862-843e-77872e5b6e7a","keyword":"开路电位","originalKeyword":"开路电位"},{"id":"f7707b98-7c10-4b03-b713-6bb79855d7a9","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"},{"id":"1a0b1b27-61f4-4bbe-a72f-f7cebb4ff761","keyword":"耐腐蚀性","originalKeyword":"耐腐蚀性"}],"language":"zh","publisherId":"zgbmgc201702013","title":"聚多巴胺修饰六方氮化硼及其环氧复合涂层的腐蚀行为","volume":"30","year":"2017"},{"abstractinfo":"金属管道、锅炉酸洗过程中,金属腐蚀不可避免,缓蚀剂是延缓金属腐蚀最有效、最经济的材料。苯胺低聚物具有可逆氧化还原特性,作为一种新型防腐蚀材料受到人们广泛关注。合成了一种水溶性良好的H3 PO4掺杂聚苯胺纳米粒子缓蚀剂,采用动电位极化曲线和交流阻抗谱技术研究该缓蚀剂在1 mol/L HCl盐酸洗液中对碳钢的缓蚀性能和缓蚀机理,并结合扫描电镜和电子能谱分析碳钢腐蚀形貌和腐蚀产物成分。结果表明: H3 PO4掺杂聚苯胺纳米粒子在碳钢表面吸附成膜,抑制氯离子对碳钢侵蚀,属于阳极型缓蚀剂。当缓蚀剂浓度为0.5 g/L时,120 min后的缓蚀效率高达94.9%。","authors":[{"authorName":"刘栓","id":"6b825e99-b521-4e17-a731-bfca75feb860","originalAuthorName":"刘栓"},{"authorName":"赵霞","id":"dca7d7a4-986d-4654-98c9-464c9305f5c1","originalAuthorName":"赵霞"},{"authorName":"赵海超","id":"784e8c28-0365-4d1a-92f8-68f0889c3892","originalAuthorName":"赵海超"},{"authorName":"陈建敏","id":"9474b307-34f2-4a48-894e-7aa5dfc910fe","originalAuthorName":"陈建敏"},{"authorName":"余海斌","id":"26c0cc76-23af-4e07-9af8-99847e8ed2ca","originalAuthorName":"余海斌"}],"doi":"10.7502/j.issn.1674-3962.2016.08.10","fpage":"629","id":"7f5bdd74-ff00-4197-a3eb-7909375e9430","issue":"8","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"41e48161-d50c-4b9e-bf79-5e1acefc345f","keyword":"H3 PO4掺杂聚苯胺","originalKeyword":"H3 PO4掺杂聚苯胺"},{"id":"393d3910-d39f-46da-a8c7-19548906530e","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"31e5af4a-9705-49ea-814b-cc51ca029a6b","keyword":"缓蚀","originalKeyword":"缓蚀"},{"id":"b6ca7475-7f2f-409c-84a9-18550051b1d1","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"}],"language":"zh","publisherId":"zgcljz201608012","title":"H3 PO4掺杂聚苯胺对碳钢的缓蚀性能研究","volume":"35","year":"2016"}],"totalpage":551,"totalrecord":5506}