欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2203)
  • 图书()
  • 专利()
  • 新闻()

Microstructure and Tensile Properties of Spray-deposited IC6 Alloy

Guofa MT , Zhou LI , Shifan TIAN , Xanguo ZHAO and Zhiping LUO (Institute of Aeronautical Materials , Beijing 100095 , China)Songyan ZENG and Qingchun LI(School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China)

材料科学技术(英文)

The microstructure and mechanical properties of a Ni3Al based Ni-Al-Mo superalloy-IC6 which possesses low impurity content and high density by spray deposition technique have been studied.The results indicate that the IC6 alloy has good tensile strength and elongation both at room and intermediate temperatures

关键词:

Image analysis of periodic rain accelerated corrosion of aeronautical aluminium alloys

Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing

Periodic rain tests have been carried out for simulating atmospheric corrosion of aeronautical aluminium alloys. A digital image preprocessing and analysis method based on wavelet transformation was used to study the corrosion morphology of aluminium alloys samples, through which an image feature parameter 8 was extracted and discussed. The influences of orthogonal experiment parameters on acceleration were analyzed according to image feature parameter 6 with analysis of variance (ANOVA) method, and the optimal parameters for accelerated corrosion test were also obtained. The result was shown to be consistent with that from weight loss method. (c) 2007 Elsevier B.V. All rights reserved.

关键词: aeronautical aluminium alloys;accelerated corrosion;linage analysis;simulated environment;atmospheric corrosion;electrochemical impedance;pitting corrosion;exposure;steel;zinc

Bio-inspired study of structural materials

Materials Science & Engineering C-Biomimetic Materials Sensors and Systems

The terminology of materials study inspired by biological systems or phenomena is analyzed at first. It is pointed that the term "bio-inspired" may be better than the terms "bionic" or "biomimetic", since the former is relatively easy to be accepted. The new trends of bio-inspired study of structural materials are analyzed in short. Some progress in bio-inspired design and processing of materials in this institute (IMRCAS) are summarized briefly in this talk, such as biomimetic design of worst bonding interface for composites; dumbell-like whiskers simulating animal bone; fractal tree reinforcement by mimicry of branched roots in soil; etc. The possibility of modification and recovery of materials by nonequilibrium bio-inspired treatment are further explored, including the nonequilibrium process under transient heating, dissipative structure and self-organization process of open system, inspiration by living process, influence of high intensive electropulsing on the working Life of materials, a possible way of fatigue recovery of materials and the healing effect of electropulsing in metals. Some tentative practice in biomaterial modification are also studied such as the reformed bamboo reinforced aluminium laminates, etc. A discussion on the methodology of bio-inspired study of materials consists briefly in the last part of the talk. (C) 2000 Elsevier Science S.A. All rights reserved.

关键词: bio-inspired;bionic;biomimetic;structural materials;composites

Dependence of strength, elongation, and toughness on grain size in metallic structural materials

Journal of Applied Physics

The dependence of yield strength, uniform elongation, and toughness on grain size in metallic structural materials was discussed. The toughness is defined as the product of yield strength and uniform elongation. The yield strength versus grain size can be well described by the Hall-Petch relation; however, the uniform elongation versus grain size is not well understood yet. A simple model involving the densities of geometrically necessary dislocations and statistically stored dislocations was proposed to estimate the uniform elongation versus grain size. Existing data for low carbon steels and aluminum indicate that, in the grain size less than 1 mu m, the materials usually exhibit high strength and low uniform elongation and, in the grain size greater than 10 mu m, the materials usually exhibit low strength and high elongation; in either case the toughness is low. However, in the grain size of several micrometers, the toughness is the highest. It is suggested that we should pay more attention to develop the metallic materials with grain size of several micrometers for structural applications. (c) 2007 American Institute of Physics.

关键词: nanocrystalline copper;nanostructured metal;steels;deformation;ductility;law

Advanced Materials for Energy Storage

Advanced Materials

Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

关键词: lithium-ion batteries;carbon nanotube electrodes;enhanced hydrogen;storage;metal-organic frameworks;double-layer capacitors;n-h system;carbide-derived carbons;ammonia borane dehydrogenation;ordered;mesoporous carbons;high-rate performance

REVIEW OF THE RESEARCHES ON MAGNETOSTRICTIVE MATERIALS

Y. Li and Chong-Oh Kim(Department of Materials Engineering , Chungnam National University , Taejon 305-764 , Korea)

金属学报(英文版)

The recent evolution in researeh on the magnetostrictive materials is briefly reviewed.A cotnpaboon of the relative preperties between bulk and thin film materialS, and theeNcts of addition of elements on the magnetic properties are alSo given.

关键词: magnetostriction , null , null

Stereology in Materials Science

LIU Guoquan Department of Materials Science and Engineering , University of Science and Technology Beijing , 100083 , China.

材料科学技术(英文)

Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.

关键词: stereology , null , null , null

Some Problems of Recycling Industrial Materials

CAI Jiuju , LU Zhongwu , YUE Qiang

钢铁研究学报(英文版)

The industrial system should learn from the natural ecosystem. The resource utilization efficiency should be increased and the environmental load should be decreased, depending on the materials recycled in the system. The classification of industrial materials from the viewpoint of largescale recycling was stated. Recycling of materials, on three different levels, was introduced in the industrial system. The metal flow diagram in the life cycle of products, in the case of no materials recycled, materials partially recycled, and materials completely recycled, was given. The natural resource conservation and the waste emission reduction were analyzed under the condition of materials completely recycled. The expressions for the relation between resource efficiency and material recycling rate, and the relation between ecoefficiency and material recycling rate were derived, and the curves describing the relationship between them were protracted. The diagram of iron flow in the life cycle of iron and steel products in China, in 2001, was given, and the iron resource efficiency, material recycling rate, and iron ecoefficiency were analyzed. The variation of iron resource efficiency with the material recycling rate was analyzed for two different production ratios.

关键词: recycling;industrial material;product life cycle;resource efficiency;ecoefficiency;material recycling rate

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共221页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词