S.Q. Wang
,
Q.C. Jiang
,
X.H. Cui and Z.M. He(School of Materials Science and Engineering
,
Jilin University of Technology
,
Changchun 130025
,
China) Manuscript received in revised form 15 September 1998
金属学报(英文版)
By the modification, network carbide was disconnected at 1100℃ through uneven dissolution at higher energy places in carbide, where there is twin or lattice distortion,and granulated at 1130℃ through element diffusion. The stability of M7C3 carbide was decreased owing to the modification reducing the segregations of Cr and M0, thus the temperature, at which uneven dissolution of carbide commenced, was decreased. Also lattice distortion or defect such as twin in carbide was increased by the modification, which prompted widespread disconnections in carbide. In addition, the modification prompted element diffusion to accelerate the kinetics process of carbide granulation.
关键词:
ledeburite steel
,
null
,
null
,
null
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
LIU Guoquan Department of Materials Science and Engineering
,
University of Science and Technology Beijing
,
100083
,
China.
材料科学技术(英文)
Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.
关键词:
stereology
,
null
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
李锋锐
,
顾牡
,
何徽
,
畅里华
,
温伟峰
,
李泽仁
,
陈亮
,
刘金良
,
欧阳晓平
,
刘小林
,
刘波
,
黄世明
,
倪晨
无机材料学报
doi:10.15541/jim20160262
采用溶剂蒸发法生长出透明的带隙宽度为2.96 eV的γ-CuI晶体.在紫外光激发下,该晶体在410、430 nm处分别呈现有近带边发射峰,另在720 nm附近还出现一个与样品碘缺陷有关的宽发射带.经碘退火后,样品720 nm发射带被基本抑制,而在420 nm处出现了一个更强的近带边发射峰.使用扫描相机分别测量了γ-CuI晶体各发射峰(带)的衰减时间谱,其中近带边发射峰的发光衰减时间常数均在数十皮秒量级,表明γ-CuI晶体具有极快的时间响应特性;而720 nm发射带的发光衰减时间常数主要在数十纳秒量级.X射线激发下,γ-CuI晶体具有435 nm近带边发射峰和680 nm发射带,其近带边发射对X射线能量响应的测量结果表明,当Ex<49.1 keV时,γ-CuI晶体闪烁光快分量对X射线的探测效率相对较高.
关键词:
γ-CuI晶体
,
超快闪烁体
,
衰减时间
,
能量响应
谢莎
,
邓爱红
,
王康
,
王玲
,
李悦
,
王勇
,
汪渊
材料研究学报
用磁控溅射方法制备纳米多晶钨膜,采用x射线衍射(XRD),扫描电子显微镜(SEM),弹性反冲探测(ERD)和慢正电子束分析(SPBA)等手段研究了在高能He+和H+依次对其辐照后He相关缺陷对H滞留的影响.结果表明,注He+钨膜在退火后从β型钨向α型钨转变;钨膜中的He含量随着退火温度的提高而减少,在873 K退火加剧钨膜中He原子的释放,且造成钨膜空位型缺陷的增加和结构无序度的提高;钨膜中的H滞留总量随着He滞留总量的减少略有下降.
关键词:
金属材料
,
磁控溅射钨膜
,
慢正电子束分析
,
H
,
He
Douxing LI and Hengqiang YE (Laboratory of Atomic imaging of Solids
,
Institute of Metal Research
,
Chinese Academy of Sciences
,
Shenyang
,
110015
,
China)
材料科学技术(英文)
The present paper summarizes the current status of high resolution electron microscopy (HREM)and the applications of HREM to materials science and condensed matter physics. This review recounts the latest development of high resolution electron microscope, progress of HREM and the applications of HREM, including the crystal structure determination of microcrystalline materials and characterization of the local structure of the defects and nanostructured materials as well as qualitative and quantitative analysis of the grain boundaries, interfaces and interfacial reactions in the advanced materials by means of HREM in combination with electron diffraction,subnanometer level analysis, image simulation and image processing.
关键词:
N.V.Ch
,
ra Shekar
,
P.Ch.Sahu
,
K.Govinda Rajan
材料科学技术(英文)
Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.
关键词:
Laser heating
,
null
,
null
,
null