{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用陶瓷CC6050、立方氮化硼CB7025和硬质合金GC2025刀具干切削轴承GCr15,研究了各刀具切削后的磨损曲线以及刀具的磨损形貌,并分析了刀具的磨损机理.结果表明:CB7025刀具的寿命最长,其次为CC6050刀具,GC2025刀具的最短;CC6050和CB7025刀具的前刀面均呈月牙洼磨损形貌,后刀面均出现了明显的磨损带;刀具的磨损机理主要有扩散磨损、氧化磨损和磨粒磨损,CC6050刀具中含有的铝和硅元素与工件材料化学亲和性较小,不易发生粘结磨损,CB7025刀具存在相变磨损,GC2025刀具存在粘结磨损.","authors":[{"authorName":"屠春娟","id":"34018bd1-cd59-4a88-920f-35885151dbb9","originalAuthorName":"屠春娟"},{"authorName":"郭旭红","id":"d4aeec64-cae1-463a-ae37-8b1fde1a9992","originalAuthorName":"郭旭红"},{"authorName":"吴少华","id":"b61cec24-101a-453f-b2b1-f4344554d996","originalAuthorName":"吴少华"}],"doi":"","fpage":"55","id":"d7b837fb-0fe9-4465-be74-d6de749fb8fa","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"648f8f92-60ac-434b-892d-fbeb89d45cae","keyword":"高刀具","originalKeyword":"高硬刀具"},{"id":"ff6122bc-4d32-466a-bf15-3f11e71a61cc","keyword":"干切削","originalKeyword":"干切削"},{"id":"a79dc64a-260a-4fd3-a16f-5ebf5c2b4e25","keyword":"","originalKeyword":"淬硬钢"},{"id":"4112396d-f024-4a7b-ac42-27eb5d9ff8e6","keyword":"磨损性能","originalKeyword":"磨损性能"}],"language":"zh","publisherId":"jxgccl201310013","title":"高刀具干切削时的磨损性能","volume":"37","year":"2013"},{"abstractinfo":"针对硬度分别为50 HRC和60 HRC的Cr12MoV钢材料,采用TiAlN涂层刀具进行了高速铣削试验,重点研究了铣削方式、刀具螺旋角以及润滑方式等铣削条件对刀具磨损的影响.结果表明:高速铣削时,导致刀具失效的典型形式是后刀面磨损;铣削方式、刀具螺旋角以及润滑方式对刀具磨损的影响是不同的;材料硬度50 HRC时,刀具螺旋角是刀具磨损的主要影响因素;材料硬度60 HRC时,润滑方式是刀具磨损的主要影响因素.","authors":[{"authorName":"张义平","id":"e11360dc-33ee-4399-906c-be8ee2ac4317","originalAuthorName":"张义平"},{"authorName":"张泠","id":"9a9b561a-2e82-4d92-b2e8-0026156c1d45","originalAuthorName":"张泠"}],"doi":"10.3969/j.issn.1000-3738.2008.02.007","fpage":"21","id":"abe341ad-e244-4129-a64c-c1cc60b8eaf3","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ed7a5f7c-9a1b-48c0-b44b-ce0609626e00","keyword":"","originalKeyword":"淬硬钢"},{"id":"ca066dc1-e768-4a2f-8d31-b592852f13b0","keyword":"高速铣削","originalKeyword":"高速铣削"},{"id":"bfbde965-0b21-4224-972c-77a680420244","keyword":"TiAlN涂层刀具","originalKeyword":"TiAlN涂层刀具"},{"id":"8dd0859b-7e9e-4d28-b4b9-b36b9dc56bb9","keyword":"刀具磨损","originalKeyword":"刀具磨损"}],"language":"zh","publisherId":"jxgccl200802007","title":"铣削条件对高速铣削TiAlN涂层刀具磨损的影响","volume":"32","year":"2008"},{"abstractinfo":"采用陶瓷刀片和CBN刀片干切削GCr15轴承,测量了不同切削参数下切削后工件的表面粗糙度;基于微粒群优化算法建立了表面粗糙度预测模型,并与线性回归法建立的经验公式进行了比较;用扫描电子显微镜观察了切屑形态。结果表明:采用微粒群优化算法建立的表面粗糙度预测模型具有一定的可靠性,与线性回归法相比,能更精确地预测出加工工件的表面粗糙度;切削参数中对表面粗糙度影响最大的是进给量,其次是背吃刀量,切削速度的影响最小;锯齿状切屑能降低切削温度,提高工件表面质量;用陶瓷刀片和CBN刀片切削获得的最低表面粗糙度分别可达0.48μm和0.56μm。","authors":[{"authorName":"屠春娟","id":"21c0f85e-a00f-4fa3-89fe-54a6c96169e4","originalAuthorName":"屠春娟"},{"authorName":"郭旭红","id":"ab035d26-fc9c-4b53-9cf9-253d2ecef68a","originalAuthorName":"郭旭红"},{"authorName":"顾晓","id":"48690568-a114-457d-b2f5-0716f9fcf1a4","originalAuthorName":"顾晓"},{"authorName":"匡清","id":"1d391d48-3983-42cb-8099-471027122a8e","originalAuthorName":"匡清"}],"doi":"","fpage":"89","id":"f5af1dd6-41aa-42dd-9222-59f9ba7eb410","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a56c0af9-8140-4722-a699-804fe5504513","keyword":"","originalKeyword":"淬硬钢"},{"id":"d3af26b9-ceb5-40f7-97a7-a21402003bdb","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"},{"id":"4ece78c3-48eb-4cfe-9175-97b6ffa37abf","keyword":"微粒群优化算法","originalKeyword":"微粒群优化算法"},{"id":"01dcbc3e-9677-4d42-b454-3e510526ab71","keyword":"预测模型","originalKeyword":"预测模型"}],"language":"zh","publisherId":"jxgccl201203025","title":"高刀片干切削GCr15轴承的表面粗糙度预测","volume":"36","year":"2012"},{"abstractinfo":"为了解决目前盾构机用刀圈因淬火后硬度高而引起的铣削加工过程中刀具易崩刃、加工效率低等问题,本文通过用铝含量高的AlTiN涂层硬质合金铣刀来替代铝含量低的TiAlN涂层硬质合金铣刀,并对铣刀进行优化设计,同时调整铣刀切削时的线速度和吃刀量,在数控加工中心上对淬火刀圈铣削工艺进行研究,结果表明:采用结构为4刃、螺旋角为30°、刀尖圆角半径R为1 mm的中12 mm整体硬质合金铣刀,进行AlTiN涂层,当径向吃刀量为0.5 mm、轴向吃刀量为1 mm、切削线速度为49 m/min、进给量为0.28 mm/r时,铣削硬度为HRC58~59的,铣刀刃磨一次的使用寿命可由原来的2h提升到5h,降低了刀具的消耗.","authors":[{"authorName":"张友才","id":"ebf4980f-2ac2-475e-a3ef-83bf7a1d839d","originalAuthorName":"张友才"},{"authorName":"马绍宏","id":"a1d79d43-cbe6-48d8-96f8-7c644f1981fc","originalAuthorName":"马绍宏"}],"doi":"10.3969/j.issn.1003-7292.2017.01.006","fpage":"34","id":"cf64e92c-0a59-49df-bf54-74a657e24dc2","issue":"1","journal":{"abbrevTitle":"YZHJ","coverImgSrc":"journal/img/cover/YZHJ.jpg","id":"75","issnPpub":"1003-7292","publisherId":"YZHJ","title":"硬质合金"},"keywords":[{"id":"b3f99d83-8aa7-418f-92a1-1c677c8644f8","keyword":"硬质合金","originalKeyword":"硬质合金"},{"id":"4d62ecab-fa37-478e-b580-d3b2610ba6a1","keyword":"涂层技术","originalKeyword":"涂层技术"},{"id":"7be612a0-d074-408a-b1ba-d11867a355a1","keyword":"","originalKeyword":"淬硬钢"},{"id":"cac73853-0232-457b-b440-7663010626c9","keyword":"硬度","originalKeyword":"硬度"},{"id":"7338be7a-3b3e-4ac4-96a3-ed74d4675204","keyword":"切削参数","originalKeyword":"切削参数"}],"language":"zh","publisherId":"yzhj201701006","title":"硬质合金铣刀铣削淬火刀圈工艺研究","volume":"34","year":"2017"},{"abstractinfo":"采用刚玉砂轮在普通平面磨床上对35CrMo进行磨削硬化,研究其硬化层组织及变化规律.结果表明:磨削淬火工艺可获得700HV以上的高硬度层,最大层深达1.8 mm;磨削淬火加热速度极快,细化了奥氏体晶粒,淬火马氏体组织非常细小,得到板条马氏体和片状马氏体的整合组织.","authors":[{"authorName":"吴良芹","id":"4c90b9df-86c9-4b62-bf2d-014cb0f8e2fd","originalAuthorName":"吴良芹"},{"authorName":"秦艳","id":"15319a08-f2c9-48d1-8092-13364cb56221","originalAuthorName":"秦艳"},{"authorName":"钱丹","id":"54a1fd82-12f0-4352-bf6f-03be452bc8fe","originalAuthorName":"钱丹"}],"doi":"","fpage":"138","id":"a5d164c2-1702-4405-9fd9-25927bffd873","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"adaa969d-a70f-44f5-a5ce-6c47a3657fc8","keyword":"磨削","originalKeyword":"磨削"},{"id":"17052b83-b569-4d5e-8367-034177dfed8c","keyword":"表面硬化","originalKeyword":"表面硬化"},{"id":"eee0e132-33dd-4c02-a754-8555a88c6207","keyword":"马氏体","originalKeyword":"马氏体"},{"id":"3168c47a-32e7-4392-9408-778ba989942c","keyword":"35CrMo","originalKeyword":"35CrMo"},{"id":"3d4722db-f616-4e1e-b85e-2898febb7580","keyword":"维氏硬度","originalKeyword":"维氏硬度"}],"language":"zh","publisherId":"bqclkxygc201301040","title":"35CrMo磨削的试验研究","volume":"36","year":"2013"},{"abstractinfo":"针对轧辊表面层深度大、表层具有细小马氏体组织的要求,采用数控淬火机床、显微镜、硬度仪等研究了感应淬火工艺参数对GCr15表面层的影响.结果表明:对层组织和性能影响较大的是加热功速比,而冷却水流量的影响不大;随着加热功速比的增大,层深度增加,但奥氏体晶粒和马氏体尺寸随之增大;试样截面的硬度曲线总体呈梯度下降分布,在离表面3 mm处存在一个峰值;预热功速比也是调整层深度的一个参考因素,增大预热功速比,层深度也会相应增大.","authors":[{"authorName":"刘江","id":"8b7592e5-c770-4650-b989-e8c71f6104f3","originalAuthorName":"刘江"},{"authorName":"陈锋","id":"98cdecfd-f130-46af-b95e-d7e1ede088ee","originalAuthorName":"陈锋"},{"authorName":"余新泉","id":"22ceffd5-4d67-4a6b-8d4b-30052889e3aa","originalAuthorName":"余新泉"}],"doi":"","fpage":"19","id":"6d6aef34-e862-4291-bc39-2c82dd6fad0f","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"062218b8-683c-46af-8ffd-456cb6e357f5","keyword":"GCr15","originalKeyword":"GCr15钢"},{"id":"e7501a42-2a8e-4944-bdcd-5e610ef4d668","keyword":"感应淬火","originalKeyword":"感应淬火"},{"id":"44445e60-d40e-48fe-8ec5-063e5f4908fb","keyword":"功速比","originalKeyword":"功速比"},{"id":"a16e8320-231b-4c82-aac9-334c09e9bdd5","keyword":"层","originalKeyword":"淬硬层"}],"language":"zh","publisherId":"jxgccl201003006","title":"感应淬火工艺参数对GCr15层的影响","volume":"34","year":"2010"},{"abstractinfo":"以单程切入式平面磨削加工试验为基础,利用X射线衍射仪和透射电镜对40Cr磨削层组织的形成及其变化进行了研究,进而阐明了磨削层组织的形成机理.结果表明,40Cr磨削层由板条马氏体和少量微细孪晶组成;在磨削温度场和应力-应变场的耦合作用下,磨削层中的马氏体含量以及板条马氏体特征尺寸沿层深呈现不同的变化趋势,马氏体内部的位错密度及孪晶数则随层深的增加而逐渐降低.","authors":[{"authorName":"刘菊东","id":"42e03ee8-9c9c-46e0-8c2f-40fcb45d927b","originalAuthorName":"刘菊东"},{"authorName":"侯达盘","id":"7cc9f3aa-079a-4039-93b4-6491a607777d","originalAuthorName":"侯达盘"},{"authorName":"王大镇","id":"c559bc89-554c-48d6-831c-f19e343a9a1a","originalAuthorName":"王大镇"}],"doi":"10.3969/j.issn.1009-6264.2007.z1.011","fpage":"41","id":"7a4b069a-40bb-4d60-8fbc-6be581e5fdfd","issue":"z1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"84a9260f-d1a1-437a-8c92-67249d8d0330","keyword":"磨削,表面淬火","originalKeyword":"磨削,表面淬火"},{"id":"3488b6eb-aee9-47c6-bf8c-3ab9f78c0c49","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"ca289116-ac7b-42c6-abd8-f60d7d1a435d","keyword":"温度场","originalKeyword":"温度场"},{"id":"840686e4-ec2a-46ed-ae66-75e0a7e43d79","keyword":"应力-应变场","originalKeyword":"应力-应变场"}],"language":"zh","publisherId":"jsrclxb2007z1011","title":"40Cr磨削层组织形成机理的研究","volume":"28","year":"2007"},{"abstractinfo":"测定了不同冷轧辊用的端曲线、奥氏体晶粒度和接触疲劳寿命,结果表明:新型冷轧辊用透深度达35~40 mm,且具有低的过热敏感性和高的接触疲劳寿命.","authors":[{"authorName":"张海","id":"0fbaf3da-9e69-4652-8f62-c5ce188f9263","originalAuthorName":"张海"},{"authorName":"姚风臣","id":"43cd045c-86b6-4ec0-9aa1-cc3bb48f0fb4","originalAuthorName":"姚风臣"}],"doi":"10.3969/j.issn.1001-0777.2005.06.001","fpage":"1","id":"727fb678-23f6-4dcb-803c-0230942667dd","issue":"6","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"e40cf9ee-5206-4433-a01d-3c81705fca95","keyword":"冷轧辊","originalKeyword":"冷轧辊"},{"id":"dafe2ec2-3311-4d4e-9027-f34bc38acdc5","keyword":"透性带","originalKeyword":"淬透性带"},{"id":"accf8422-133b-497d-871d-ce1246eaf8fb","keyword":"过热敏感性","originalKeyword":"过热敏感性"},{"id":"399fa730-bb38-47a2-b5b5-deebdc2871e5","keyword":"接触疲劳寿命","originalKeyword":"接触疲劳寿命"}],"language":"zh","publisherId":"wlcs200506001","title":"深层冷轧辊用的端曲线","volume":"23","year":"2005"},{"abstractinfo":"以三种渗碳层深度不同的20CrMnMo齿轮试样为研究对象,对其显微组织和硬度梯度进行检测,采用电化学剥层技术,借助X-350A型X射线应力仪,测量各试样深层渗碳层的残余应力及其分布,将硬度梯度与残余应力的分布进行对照,认为20CrMnMo渗碳层硬度小于400 HV1,均为残余压应力,之后才转换为残余拉应力,这一结果为确保齿面具有可靠的抗接触疲劳性能,合理地确定重载大模数齿轮有效硬化层深度提供技术支撑.","authors":[{"authorName":"王洪","id":"d471a1bb-e131-4062-851a-12629273ed7f","originalAuthorName":"王洪"},{"authorName":"李光瑾","id":"85064986-7c5b-4050-a82e-7661e299da5b","originalAuthorName":"李光瑾"},{"authorName":"陈德华","id":"eed66b60-49a0-4702-b0b8-5fa1ab0611b5","originalAuthorName":"陈德华"},{"authorName":"邵光杰","id":"5bd6ac40-8c0c-4065-b5c3-42918d2e7e53","originalAuthorName":"邵光杰"}],"doi":"10.3969/j.issn.1001-7208.2012.01.003","fpage":"10","id":"c84fc85b-32aa-4d5b-9700-1be423dd7943","issue":"1","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"51184425-016d-4d03-bb53-65d4ca8e9fa5","keyword":"20CrMnMo齿轮","originalKeyword":"20CrMnMo齿轮钢"},{"id":"0c143cca-7950-48c4-ad32-7a11d18d8bb3","keyword":"渗碳层","originalKeyword":"渗碳淬硬层"},{"id":"4eea4932-0428-4b8e-8e56-2e486da4ce2a","keyword":"组织","originalKeyword":"组织"},{"id":"a677263a-ebec-4f0e-88c2-a6778f73c201","keyword":"残余应力","originalKeyword":"残余应力"}],"language":"zh","publisherId":"shjs201201003","title":"20CrMnMo不同渗碳层深度的组织与应力分布","volume":"34","year":"2012"},{"abstractinfo":"在实验室开展含4%Cr、0.8%C、以及少量N和Re的8Cr4MoV低合金锻造冷轧工作辊试验。试验采用50kg真空感应电炉冶炼,经过锻造、调质处理,然后检验力学性能、微观组织和顶端淬火透性试验结果,采用综合性能较好的钢种试制武钢冷轧厂冷连轧机φ610×1700㎜超深层冷轧工作辊。试制工作辊毛坯采用电炉+真空脱气+电渣重熔工艺冶炼,夹杂物和有害气体含量低;辊身采用50/250Hz双频感应加热淬火,层深,硬度均匀性好。试用结果表明,其耐磨性较高,使用寿命达到Cr2常规工作辊的1.6倍;层深度与Cr5超深层冷轧工作辊相当,且没有发生剥落,具有较好的抗事故性。","authors":[{"authorName":"吴国胜李伟等","id":"81267f07-5b88-4b92-aaf3-99d8d4b97921","originalAuthorName":"吴国胜李伟等"}],"categoryName":"|","doi":"","fpage":"72","id":"7d44d696-0a79-4efb-8cd6-cba72426e10a","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c1745d3c-9fda-4bca-b979-1d8252c65c24","keyword":"冷轧工作辊;机械性能;微观组织;透性;使用寿命","originalKeyword":"冷轧工作辊;机械性能;微观组织;淬透性;使用寿命"}],"language":"zh","publisherId":"0449-749X_2010_11_3","title":"8Cr4MoV低合金锻超深层冷轧工作辊研制与应用","volume":"45","year":"2010"}],"totalpage":2531,"totalrecord":25302}