欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(3)
  • 图书()
  • 专利()
  • 新闻()

Experimental Investigation and Numerical Simulation of the Grain Size Evolution during Isothermal Forging of a TC6 Alloy

Miaoquan LI , Shankun XUE , Aiming XIONG , Shenghui CHEN

材料科学技术(英文)

Hot compression was conducted at a Thermecmaster-Z simulator, at deformation temperatures of 800~1040℃, with strain rates of 0.001~50 s-1 and height reduction of 50%. Grain size of the prior α phase was measured with a Leica LABOR-LUX12MFS/ST microscope to which QUANTIMET 500 software for image analysis for quantitative metallography was linked. According to the present experimental data, a constitutive relationship for a TC6 alloy and a model for grain size of the prior α phase were established based on the Arrhenius' equation and the Yada's equation, respectively. By finite element (FE) simulation, deformation distribution was determined for isothermal forging of a TC6 aerofoil blade at temperatures of 860~940℃ and hammer velocities of 9~3000.0 mm/min. Meanwhile, the grain size of the prior α phase is simulated during isothermal forging of the TC6 aerofoil blade, by combining FE outputs with the present grain size model. The present results illustrate the grain size and its distribution in the prior α phase during the isothermal forging of the TC6 aerofoil blade. The simulated results show that the height reduction, deformation temperature, and hammer velocity have significant effects on distribution of the equivalent strain and the grain size of the prior α phase.

关键词: Titanium alloy , null , null , null , null

Numerical Simulation and Shrinkage Defects Prediction of a Turbine Blade Investment Casting

Jing TIAN , Xiang XUE , Yuebing ZHANG , Yalong GAO , Luzhi LIU , Qin SUN , Shiyou YUAN

材料科学技术(英文)

By adopting the solid modeling software SoldEdge and the enmeshment software SRIFCast as the pre-processing platform, a Ni based alloy turbine blade was three-dimensionally modeled and automatically enmeshed. A software code for numerical simulation of fluid flow and heat transfer was developed. The Xue criterion and Niyama criterion were used to predict the position of the shrinkage defects occurring in the solidification processes of the turbine blade. The results showed that both Xue and Niyama criteria could precisely predict the shrinkage defects in the Ni based alloy turbine blade. This indicates that numerical simulation is a significant tool in improving casting quality.

关键词:

First-principle study of electronic properties of Ti3Si1-xAlxC2 solid solutions

Journal of Physics and Chemistry of Solids

The layered ternary ceramics Ti3SiC2 and Ti3AlC2 are isostructural and can form Ti3Si1-xAlxC2 solid solutions combining the advanced properties of both compounds [H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.90Al0.1C2 solid solution, Acta Mater. 52 (2004) 3631-3637; E.D. Wu, J.Y. Wang, H.B. Zhang, Y.C. Zhou, K. Sun, Y.J. Xue, Neutron diffraction studies of Ti3Si0.9Al0.1C2 compound, Mater. Lett. 59 (2005) 2715-2719; J.Y. Wang, Y.C. Zhou, First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution, J. Phys.: Condens. Matter 15 (2003) 5959-5968; Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions, Acta. Mater. 54 (2006) 1317-1322]. In the present work, the solid solutions of Ti3Si1-xAlxC2 (x = 0, 0.25, 0.33, 0.5, 0.67, 0.75, 1) are investigated by first-principle calculations based on pseudo-potential plan-wave method within the density functional theory framework. The results show that as Al content increases in the solid solution, all the bonds have weakened to certain extents, which lead to an unstable structure both energetically and geometrically. The calculated results are compared and discussed with the reported data for the Ti3Si1-xAlxC2 solid solutions. (c) 2007 Elsevier Ltd. All rights reserved.

关键词: ceramics;ab initio calculations;electronic structure;electrical;conductivity;oxidation behavior;mechanical-properties;ti3sic2;temperature;ti3alc2;air;si

出版年份

刊物分类

相关作者

相关热词