E.L. Zhang
,
B.Yang
,
S.Y. Zeng and Q.C. Li(School of Materials Science and Engineering
,
Harbin Institute of Technology
,
BOX 428
,
Harbin 150001.)China)M.Z.Ma (Jiamusi University Jiamusi 154002
,
China)
金属学报(英文版)
The reaction process and mechanistn of reaction synthesis of TiC in Al-Ti-C system have been investigated in detail by observing the microstructure of the water quenched preform with SEM and EDX. The results showed that the reaction processing can be divided into three stages: aluminium powder is melted firstly, then titanium dissolves in the melted aluminium and Al3Ti is formed around titanium powder, titanium concentrates around carbon powder and a Ti-rich layer is observed around carbon pariicles,in which titanium atom reacts with carbon atom to synthesize TiC;TiC precipitates out of the melt, and diffuses out of the layer. A solution-precipitation mechanism and a reaction model were set up based on the experimental results.
关键词:
kinetic process
,
null
,
null
,
null
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
LIU Guoquan Department of Materials Science and Engineering
,
University of Science and Technology Beijing
,
100083
,
China.
材料科学技术(英文)
Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.
关键词:
stereology
,
null
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
姜奉华
,
徐德龙
硅酸盐通报
doi:10.3969/j.issn.1001-1625.2004.06.006
通过研究Q相与C2S和Q相与C4AF的共存条件,构造Q相-C2S-C4AF水泥系统,对此系统水泥形成条件进行研究.研究表明:Q相与C2S和Q相与C4AF能够共存,可以组成Q相-C2S-C4AF-C12A7水泥系统.在Q相-C2S-C4AF-C12A7水泥系统中,Q相在1270℃开始生成,随着温度的升高,Q相的生成量逐渐增大;采用V2O5对β-C2S具有较好的稳定作用.随着C4AF量的增加,Q相的量也在增加,同时,烧成温度降低.
关键词:
Q相
,
Q相-C2S-C4AF水泥
,
形成条件
,
抗压强度
材料科学技术(英文)
The corrosion of an Fe-based alloy containing 15 wt pet Y in H-2-H2S mixtures under 10(-3) Pa S-2 was studied at 600 similar to 800 degrees C in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of Y has been shown to be beneficial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus, Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the Y addition, but the alloy corrodes still much more rapidly than Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12 similar to 17 h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17Y2 and the limited solubility of Y in Fe.
关键词:
high-temperature sulfidation;most-reactive component;ni-nb alloys;h2-h2s mixtures;behavior;600-degrees-c-800-degrees-c;oxidation