{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用1H、13C核磁共振波谱对二酚基丙烷环氧树脂E-51、缩水甘油胺型环氧树脂AG-80、脂环族缩水甘油酯TDE-85的结构进行了表征,并通过二维COSY谱及1H-13C化学位移相关谱对各共振峰进行了指认.","authors":[{"authorName":"冀克俭","id":"31c2d2a7-852e-4750-b433-dacc338496c4","originalAuthorName":"冀克俭"},{"authorName":"刘元俊","id":"8cabec23-3e82-4bb2-b9ac-caae2f91c0b0","originalAuthorName":"刘元俊"},{"authorName":"张银生","id":"d96dd113-01e6-446f-9f62-e7b7ea3e0363","originalAuthorName":"张银生"},{"authorName":"邓卫华","id":"d1cffb24-2a5a-4de3-a6b3-90dc9a8ce2fc","originalAuthorName":"邓卫华"}],"doi":"10.3321/j.issn:1000-3851.2000.01.004","fpage":"15","id":"7346a26a-fffe-4040-bea1-2819af82e621","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"62b0a781-11bb-4cb3-a782-57b47b7f7f29","keyword":"核磁共振波谱","originalKeyword":"核磁共振波谱"},{"id":"81060c36-220a-4265-98c2-7bc6e4698166","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"6378bd77-6be2-46e7-a8ef-031db255d3b2","keyword":"化学位移","originalKeyword":"化学位移"},{"id":"ff61f866-c0d0-40ed-ae78-b9790f3acee1","keyword":"NMR","originalKeyword":"NMR"}],"language":"zh","publisherId":"fhclxb200001004","title":"环氧树脂的NMR表征","volume":"17","year":"2000"},{"abstractinfo":"介绍了在环氧树脂中引入含硅组分来提高其耐热性和韧性、引入含磷组分改性环氧树脂提高其阻燃性方面的研究进展.","authors":[{"authorName":"季卫刚","id":"ddf1f62d-7ecd-4369-9b4d-0987af740754","originalAuthorName":"季卫刚"},{"authorName":"胡吉明","id":"0c7c579a-0076-4f1c-91b3-b83f3b78522d","originalAuthorName":"胡吉明"},{"authorName":"张鉴清","id":"71f38720-88b1-4325-8680-616700cc43fe","originalAuthorName":"张鉴清"},{"authorName":"曹楚南","id":"16605937-7d76-41e7-a429-6c0a22bffae1","originalAuthorName":"曹楚南"}],"doi":"","fpage":"1","id":"1aefdd09-31fa-48b5-8f36-097f71f232f8","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c3b6c1d7-9ba9-4d07-a5e4-7cf487e998f2","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"dee657ce-3f52-44ba-98c7-efd06400820d","keyword":"改性","originalKeyword":"改性"},{"id":"d267fd39-d04a-4b13-b982-986f619e33e5","keyword":"硅试剂","originalKeyword":"硅试剂"},{"id":"61a1c5af-262e-4560-aaa1-dd29c3064f26","keyword":"磷试剂","originalKeyword":"磷试剂"},{"id":"e997e46f-317f-435f-ad01-2fd161912e1f","keyword":"耐热","originalKeyword":"耐热"},{"id":"729d8ec9-b010-453e-ae5e-82edbb3eba67","keyword":"阻燃","originalKeyword":"阻燃"}],"language":"zh","publisherId":"gfzclkxygc200602001","title":"环氧树脂的磷、硅改性","volume":"22","year":"2006"},{"abstractinfo":"分析了氰酸酯树脂环氧树脂的共固化反应;对氰酸酯树脂改性环氧树脂固化物的力学性能进行测试,评价其改性效果.结果表明:氰酸酯树脂改性环氧树脂的冲击强度、弯曲强度、拉伸剪切强度均明显提高.","authors":[{"authorName":"陈青","id":"f7886191-6bd7-4a4c-8fc3-8c4e8c39e02f","originalAuthorName":"陈青"},{"authorName":"宫大军","id":"c848121e-73ef-4974-8e9e-e3fea1d44b86","originalAuthorName":"宫大军"},{"authorName":"魏伯荣","id":"6d1336db-3a28-42e0-b7ea-6ce20338103b","originalAuthorName":"魏伯荣"},{"authorName":"柳丛辉","id":"a18a8cbc-a509-4b7c-839e-9b2195963be4","originalAuthorName":"柳丛辉"}],"doi":"10.3969/j.issn.1009-9239.2010.06.014","fpage":"51","id":"8c336d7f-7b2f-4898-91eb-227c3d557b47","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"dfcd9464-51b4-47fa-bf23-e9ecbc798bc5","keyword":"氰酸酯树脂","originalKeyword":"氰酸酯树脂"},{"id":"3c970004-9cc3-4567-8df6-1ae3547dcede","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"a3a784dc-e523-4b1e-b709-da6a976d2600","keyword":"改性","originalKeyword":"改性"},{"id":"f260887e-59fd-4b02-947f-6435661a249b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jycltx201006014","title":"氰酸酯树脂改性环氧树脂的力学性能","volume":"43","year":"2010"},{"abstractinfo":"采用环氧树脂(E-51)与氰酸酯树脂共聚以改善氰酸酯树脂的韧性,研究了环氧树脂的加入量、后处理温度、湿热老化、紫外光老化等条件对改性后树脂体系的力学性能和介电性能的影响规律,采用扫描电子显微镜对断口形貌进行了分析.结果表明环氧树脂可以明显改善氰酸酯树脂的韧性,环氧树脂含量为30wt%的体系的冲击强度和弯曲强度分别比改性前提高了100%和50%.随环氧树脂用量的增加,改性树脂的冲击强度和弯曲强度增大,树脂表现为明显的韧性断裂;改性体系经200℃后处理2h的介电性能最佳,环氧树脂用量的增加、湿热老化和紫外光老化都使介电常数和介电损耗增加,但当环氧树脂用量低于30wt%时仍属于优异的介电材料.","authors":[{"authorName":"杨洁颖","id":"f5d84701-6df3-4d20-8a10-98860d24154a","originalAuthorName":"杨洁颖"},{"authorName":"梁国正","id":"52b80b32-e357-4e4a-93f7-d9d368d49730","originalAuthorName":"梁国正"},{"authorName":"任鹏刚","id":"09f94a5b-2cb5-434d-9253-251731556b11","originalAuthorName":"任鹏刚"},{"authorName":"王结良","id":"4b34e6d5-d946-4c53-8892-6e36b66f90aa","originalAuthorName":"王结良"},{"authorName":"房红强","id":"8909b8a0-be49-4039-a415-738b385574f1","originalAuthorName":"房红强"},{"authorName":"宫兆合","id":"01847577-35f1-40ad-a72b-df3f4f8dd2ca","originalAuthorName":"宫兆合"}],"doi":"10.3969/j.issn.1005-5053.2004.03.005","fpage":"21","id":"2e9921d7-f9e7-4a89-bd79-a8a52ee1b1a4","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"0d18f48a-1d77-4269-a311-a4bc6e3528da","keyword":"氰酸酯树脂","originalKeyword":"氰酸酯树脂"},{"id":"972f4bd4-bcf2-4482-bce9-dcb5e6cc9e8f","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"c97efe6e-2b80-4e70-83e3-85887fa37290","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"57a47342-8668-44b8-94e3-552d57e4db88","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"hkclxb200403005","title":"氰酸酯/环氧树脂体系的研究","volume":"24","year":"2004"},{"abstractinfo":"采用红外光谱对氰酸酯树脂(CE)改性环氧树脂的共固化反应进行分析,测试了环氧树脂固化物的介电常数(ε)、介质损耗因数(tanδ)和吸湿率,通过TG分析了固化物的热稳定性.结果表明:随着CE含量的增加,环氧树脂固化物的ε、tanδ下降;随着测量频率的增加,固化物的ε下降,tanδ上升.改性环氧树脂的吸水率降低,热稳定性变化较小,介电性能明显提高.","authors":[{"authorName":"陈青","id":"2816e6c9-b641-4269-a08c-3203a559171a","originalAuthorName":"陈青"},{"authorName":"魏伯荣","id":"87a27b5a-2e58-4873-a629-5c88ed1c1083","originalAuthorName":"魏伯荣"},{"authorName":"宫大军","id":"b8c9b347-2096-47b9-a747-ff049069a55e","originalAuthorName":"宫大军"},{"authorName":"钟瑶冰","id":"6f0d0312-2e69-4f1a-98ba-fca8762b75cc","originalAuthorName":"钟瑶冰"},{"authorName":"雍国新","id":"1ea0ceb9-994a-4cc5-9daa-a336971d7ef0","originalAuthorName":"雍国新"}],"doi":"10.3969/j.issn.1009-9239.2012.01.013","fpage":"49","id":"e4101c52-fe8a-4b0e-af59-2fdd220f276a","issue":"1","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"7c3cf9ed-2c6d-4b45-929d-660a561ba8d6","keyword":"氰酸酯树脂","originalKeyword":"氰酸酯树脂"},{"id":"bed70e3e-a9af-4d39-bc6b-d66b2990e668","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"df2e2123-6dc6-4631-829e-6c2c1e70d00a","keyword":"改性","originalKeyword":"改性"},{"id":"2abcf627-5e1e-4139-a89f-6a55c4c38025","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"jycltx201201013","title":"氰酸酯改性环氧树脂的研究","volume":"45","year":"2012"},{"abstractinfo":"本文综述了提高环氧树脂耐热性的主要方法,一是通过环氧树脂或固化剂本身导入新结构,以改善其耐热性,如多官能度结构、芳环、液晶结构等;二是采用共混、共聚等方法对环氧树脂进行改性,如热塑性聚合物、有机硅、纳米材料等.并简要介绍了目前耐高温环氧树脂研究中存在的一些问题和发展方向.","authors":[{"authorName":"刘晓蓓","id":"d0793087-9269-4dd2-b935-b5e5eacb3df4","originalAuthorName":"刘晓蓓"},{"authorName":"王晓洁","id":"54ea743a-c501-4f13-a29c-f46fc468047d","originalAuthorName":"王晓洁"},{"authorName":"惠雪梅","id":"d8023771-03a7-4b34-bd86-4b1892c31e02","originalAuthorName":"惠雪梅"}],"doi":"","fpage":"118","id":"acc01a7a-178d-4823-8788-0e49ac33812a","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"e0285e30-580e-4b72-8277-025aa8b485da","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"e3926de3-e90c-43f6-993f-32e917fb2919","keyword":"耐热性","originalKeyword":"耐热性"},{"id":"d00ab292-dbcd-4934-a60d-bfb67313b7e1","keyword":"耐热结构","originalKeyword":"耐热结构"},{"id":"d6b139b6-cf58-4835-9fca-f0bc38bc6d38","keyword":"改性","originalKeyword":"改性"}],"language":"zh","publisherId":"blgfhcl201303026","title":"耐高温环氧树脂研究进展","volume":"","year":"2013"},{"abstractinfo":"综述了环氧树脂的研究应用工作,着重讨论了环氧树脂的结构改性、聚合物复合改性、无机物复合改性及其改性机理,简要评述了今后的发展方向.","authors":[{"authorName":"蔡辉","id":"35d5aaea-4a19-4089-9ace-0853f496efd8","originalAuthorName":"蔡辉"},{"authorName":"闫逢元","id":"c12d3682-4247-427e-8099-4bf4e07faeac","originalAuthorName":"闫逢元"},{"authorName":"薛群基","id":"befcd8c4-1517-428d-8aa5-b672f3e89268","originalAuthorName":"薛群基"}],"doi":"","fpage":"46","id":"45e0c500-4299-4892-a2cf-6a17fa6ea36b","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7aed5c7d-c43b-4ad9-bf5e-760a355710ba","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"084bbaf1-591a-4f2b-b358-990c53cccb30","keyword":"改性机理","originalKeyword":"改性机理"}],"language":"zh","publisherId":"cldb200302016","title":"环氧树脂研究与应用进展","volume":"17","year":"2003"},{"abstractinfo":"采用DSC和FTIR研究了氰酸酯树脂/环氧树脂共混体系的固化行为,考察了环氧树脂含量对体系的固化动力学参数的影响.纯的氰酸酯树脂及氰酸酯树脂/环氧树脂共混物(质量比为9:1,7:3,5:5)的表观活化能依次为74.3、72.1、60.8、72.7 kJ/mol,说明少量的环氧树脂可促进氰酸酯树脂的固化反应,过量则抑制.同时还发现,固化过程中氰酸酯树脂的转化速率远大于环氧树脂,固化反应对氰酸酯基和环氧基均是一级反应.","authors":[{"authorName":"方征平","id":"5477924c-a45a-4e1d-ac2a-0ed1cbc33f82","originalAuthorName":"方征平"},{"authorName":"冯煜","id":"b8308014-c6d9-4ffe-9637-3a99167288ff","originalAuthorName":"冯煜"},{"authorName":"金邦梯","id":"9165de0f-cccb-4959-a768-061939e9334d","originalAuthorName":"金邦梯"}],"doi":"","fpage":"2116","id":"fce7c1f2-526e-48a1-98df-586add53694a","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"296a0a4b-f25c-402a-bac9-fabfb3054ed9","keyword":"氰酸脂树脂","originalKeyword":"氰酸脂树脂"},{"id":"d61c33f0-9a72-4033-b0ee-df99b0bb0baf","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"b2501aee-0ad9-4ece-b234-8263e5a4ac00","keyword":"共混物","originalKeyword":"共混物"},{"id":"87816c8f-e2bf-46a3-a48d-561e768f5f64","keyword":"固化动力学","originalKeyword":"固化动力学"}],"language":"zh","publisherId":"gncl2004z1586","title":"氰酸酯树脂/环氧树脂固化动力学研究","volume":"35","year":"2004"},{"abstractinfo":"概述了反应性橡胶弹性体、热塑性树脂增韧环氧树脂的增韧机理和发展现状.并简要介绍了互穿网络结构、柔性链段固化剂和热致液晶聚合物等环氧树脂增韧改性新技术.\n","authors":[{"authorName":"常鹏善","id":"637f39c3-2441-4a1d-a600-663659230bf9","originalAuthorName":"常鹏善"},{"authorName":"左瑞霖","id":"b2a0f72b-462b-4b35-b7d6-154478b442b0","originalAuthorName":"左瑞霖"},{"authorName":"王汝敏","id":"c8feeabc-cb9a-4528-9e54-8820c17ecfd0","originalAuthorName":"王汝敏"},{"authorName":"陈立新","id":"917203d0-a4d3-4e72-b386-968fa6586d45","originalAuthorName":"陈立新"}],"doi":"","fpage":"54","id":"dc66f403-dd2f-4a1f-bf42-be051fce3306","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a879d9f7-0ee5-417a-befb-7036893d3087","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"360cd83e-8977-4d75-a676-eb22df14c222","keyword":"增韧","originalKeyword":"增韧"},{"id":"f59c7e7b-4b4a-4170-b942-ced4d753f5ce","keyword":"热塑性树脂","originalKeyword":"热塑性树脂"},{"id":"ccb20a1b-c820-4020-9529-b154d813ea77","keyword":"互穿网络","originalKeyword":"互穿网络"},{"id":"448b2db1-9145-4d3b-8b8a-233440595e0e","keyword":"热致液晶聚合物","originalKeyword":"热致液晶聚合物"}],"language":"zh","publisherId":"cldb200202018","title":"环氧树脂增韧研究进展","volume":"16","year":"2002"},{"abstractinfo":"以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)对环氧树脂进行改性,制备的改性环氧树脂不用中和即可在水中分散形成稳定的乳液.研究发现AMPS与环氧树脂原料摩尔比为1:0.75时,制备的改性树脂水分散乳液的粒径最小、粒径分布最窄.讨论了反应时间对改性产物特性粘数、反应体系的酸值、制备的乳液的粒径及粒径分布的影响.由红外光谱表征,AMPS-EP共聚物中保存了环氧树脂的环氧基,同时引入了亲水性的磺酸基.由DSC分析,AMPS-EP的玻璃化转变温度为140℃,高于原料AMPS均聚物与环氧树脂.实验结果表明了AMPS与环氧树脂的主要反应为:在自由基引发剂的作用下,环氧树脂主链上产生的链自由基,引发AMPS的丙烯酰胺基接枝反应,以及AMPS的磺酸基与环氧树脂的环氧基的酯化反应,及由此产生的环氧树脂的扩链反应.","authors":[{"authorName":"钟世安","id":"5e030cf5-719d-4205-9088-90f73873fdc1","originalAuthorName":"钟世安"},{"authorName":"邓翠燕","id":"380e7027-12f8-4970-bcf3-9b06f2144cd9","originalAuthorName":"邓翠燕"},{"authorName":"郑文姬","id":"d636c21c-0e33-4ea6-908f-e9fc5fc463fc","originalAuthorName":"郑文姬"},{"authorName":"马承银","id":"5de0dc08-6c80-40e2-8f59-d28af1cd67bf","originalAuthorName":"马承银"}],"doi":"10.3969/j.issn.1673-2812.2007.01.032","fpage":"125","id":"233148d0-7b8d-4ce7-a15a-4bf05363abf7","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"fe551988-550b-420f-94f5-67d8d1810071","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"41e94c91-88c7-4690-9db7-9fa7a686a80e","keyword":"AMPS","originalKeyword":"AMPS"},{"id":"257f1ec0-cb6a-474e-a3f5-80a871a907e4","keyword":"接枝反应","originalKeyword":"接枝反应"},{"id":"bfe4002b-1c65-477e-8904-e87ecf508abf","keyword":"扩链反应","originalKeyword":"扩链反应"}],"language":"zh","publisherId":"clkxygc200701032","title":"AMPS对环氧树脂改性的研究","volume":"25","year":"2007"}],"totalpage":851,"totalrecord":8503}