欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1934)
  • 图书()
  • 专利()
  • 新闻()

Notch Severity Effect on Hydrogen Embrittlement of Type 4340 Steel

Su'e LIU , Zhong ZHU and Wei KE(State Key Lab. of Corrosion and Protection , Institute of Corrosion and Protection of Metals , Chinese Academy of Sciences , Shenyang 110015 , China) D.Hardie(Dept. of Mechanical , Materials and Manufacturing Engineering , Universi

材料科学技术(英文)

Hydrogen embrittlement of Type 4340 steel has been investigated by straining round-notchedspecimens in 105 Pa hydrogen atmosphere at a constent cross-head spead of 1.4x 10-4 mm/s.The circumferentially notched specimens exhibited a significant embrittlement when their me-chanical behaviour in hydrogen was compared with that in air. Although the effect of notch depthon fracture strength in air is negligible, an increase in the depth of notch increase susceptibility toembrittlement when testing in gaseous hydrogen. However, analysis of the effects is complicatedby the facts that (i) the specimens show some degree of notch severity even when strained inair and (ii) the behaviour is complicated by the localised plastic deformation that may occur forrelatively shatlow notches. Such effects are eliminated at high stress concentration factors, sothere is a systematic loss in fracture stress in hydrogen as the notch sensitivity increases fromK=2.6 to 5.7 (where a 87% reduction of fracture stress occurs) but a relatively stable value isthen reached even for very severe notching bj fatigue pre-cracking. Whether or not the effectis due to increasing concentration of hydrogen in the triaxial stress region ahead of the notch,there is no doubt that increasing the stress concentration makes hydrogen more effective as anembrittlement agent.

关键词:

Service Performance of Engineering Materials

Andrej Atrens

材料科学技术(英文)

Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.

关键词: Stress corrosion cracking , null , null

Biomimicry of bamboo bast fiber with engineering composite materials

Materials Science & Engineering C-Biomimetic Materials Sensors and Systems

Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.

关键词: bamboo;bast fiber;biomimetics;engineering composites

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

Science

Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.

关键词: strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior

Influence of plastic deformation upon the half-width of engineering metallic materials in hard state

Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science

The half-width values of the X-ray diffraction profiles are frequently used to characterize the static strength of a strengthened surface, or the depth distribution of this mechanical parameter, in a strengthened surface layer, especially in a shot-peening affected layer. However, for the unpeened surface and the base material of the shot-peened specimen of an alloy steel treated in hard state, the experimental results shown in this article indicate that uniaxial tensile or compressive plastic deformation increases the yield strengths while it decreases the half-width values. The half-width values of the shot-peened surface and surface layer greatly decrease, whereas the yield strength of this surface remarkably increases. Accordingly, in the authors' opinion, the half-width values could not correctly describe the static strengths of hard metallic materials, and, contrary to the viewpoint put forward by a lot of researchers, the shot-peened surfaces of such materials are work hardened instead of work softened. A model demonstrating that plastic deformation reduces the half-width values by decreasing the second kind internal stresses is developed.

关键词:

Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies

Lawrence E. Murr

材料科学技术(英文)

Selective laser melting (SLM) and electron beam melting (EBM) are relatively new rapid, additive manufacturing technologies which can allow for the fabrication of complex, multi-functional metal or alloy monoliths by CAD-directed, selective melting of precursor powder beds. By altering the beam parameters and scan strategies, new and unusual, even non-equilibrium microstructures can be produced; including controlled microstructural architectures which ideally extend the contemporary materials science and engineering paradigm relating structure-properties-processing-performance. In this study, comparative examples for SLM and EBM fabricated components from pre-alloyed, atomized precursor powders are presented. These include Cu, Ti-6Al-4V, alloy 625 (a Ni-base superalloy), a Co-base superalloy, and 17-4 PH stainless steel. These systems are characterized by optical metallography, scanning and transmission electron microscopy, and X-ray diffraction.

关键词: Selective laser melting

Modeling and control of welding flexible manufacturing cell using petri net

Tao QIU , Shanben CHEN , Yuntao WANG , Lin WU

材料科学技术(英文)

A new welding flexible manufacturing cell (WFMC) with intelligent welding sensors was investigated. Based on the analysis of information flow in WFMC, automation Petri net control model has been studied, which can be extended to complex welding flexible manufacturing system in the future.

关键词:

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共194页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词