欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(3686)
  • 图书()
  • 专利()
  • 新闻()

ER Smart Fluids: Properties and Applications

Yanju LIU , Jinsong LENG and Dianfu WANG(Research Lab. of Composite Materials , Harbin Institute of Technology , Harbin 150001 , China)

材料科学技术(英)

ER fluid is one of the popular materials used in smart materials and structures (SMS). In thispaper, several ER fluids were synthesized. The static and dynamic mechanic characteristics weremeasured and discussed. The application of ER fluid on a sandwich beam featuring ER fluidapplied to vibration control was investigated.

关键词:

THE CHANGING ROLE OF THE NATIONAL LABORATORIES IN MATERIALS RESEARCH

WADSWORTH Jeffrey and FLUSS Michael(Chemistry and Materials Science Directorate , Lawrence Livermore National Laboratory , Livermore , CA 94551)

金属学报(英文版)

The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to .determining overall research strategies, various initiatives to interact with industry (especially in recent years),building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for Research &Development (R&D) in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs,increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

关键词: : U.S. Materials Science. U.S. National Laboratories and Facilities , null

THE BIOMIMETIC STUDY OF COMPOSITE-MATERIALS

Jom-Journal of the Minerals Metals & Materials Society

Composite materials employ both matrix and reinforcement properties to provide high performance, but they are difficult to design. Biomaterials in nature are composites that provide inspiring examples of completeness and efficiency. Biomimetic analyses and biomimetic design and testing are a new direction in the study of composite materials, In this article, several examples show how biomimetic methods can significantly improve material properties.

关键词: fracture-toughness;fibers

Biomimetic Design and Test of Composite Materials

Benlian ZHOU International Centre for Materials Physics , Institute of Metal Research , Academia Sinica , Shenyang , 110015 , China

材料科学技术(英)

A series of superior properties will make composites the most important structural materials in the next century.But they are difficult to design owing to the complexity of structure and processing. Biomaterials had been naturally selected and evolved for millions of years,a great variety of their ra- tional composite structures could be taken as our reference in the biomimetic design of composite materials.There are many difficult problems in the current study on composite materials such as: brittleness of continuous fibers and difficulties in interface design;easy pull-out of short fibers from matrix causing failure in reinforcing;being less easy in selecting the aspect ratio of whiskers and dif- ficulties in finding the way of toughening composites of ceramic matrices as well as the way of heal- ing inner damages.After describing the distinct composite features,the functional adaptability and self-healing ability of biomaterials,several examples o.f biomimetic design of composite materials have been listed in this paper:the optimum design of composites simulating bamboo structure;the fine structure of bamboo fibers;the dumb-bell model simulating animal bone;the model on the pull-out of fiber with fractal-tree structure and some tentative works on the healing of inner damage in composite materials The methodology of biomimetic design and its future have been given at the ast part of this paper.

关键词: composite material , null , null

Development of Production Technology of Castle Composite Materials

Irina N.Mutilina

材料科学技术(英)

The application of mechanical and chemical syntheses in an high-energy vibration mill of the FESTU makes easy the process of the introduction of reinforced powders in castle composite materials on the Al basis. The obtained reinforced phases of Al-Ti-C composition have high specific Surface due to peculiarities of explosive mechanical and chemical syntheses. It increases the uniformity of their distribution in a matrix melt during the mixing process and also increases properties of castle composite materials

关键词:

Biomimicry of bamboo bast fiber with engineering composite materials

Materials Science & Engineering C-Biomimetic Materials Sensors and Systems

Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.

关键词: bamboo;bast fiber;biomimetics;engineering composites

RESEARCH AND DEVELOPMENT OF HIGH TEMPERATURE STRUCTURAL MATERIALS FOR AERO-ENGINE APPLICATIONS

G.Q. Zhang

金属学报(英文版)

The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superalloys for aero-engine disks and rings, and powder metallurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.

关键词: superalloy , null , null

Some progress in the biomimetic study of composite materials

Materials Chemistry and Physics

Some progress in the biomimetic design and processing of composite materials has been achieved on the basis of biomimetic analyses. The excellent structures and characteristics of biomaterials, such as adapting to stress conditions by form modulation, compensating for lacking material by composite structures, and healing injuries by material and energy supplements, are analyzed. Some examples of biomimetic design and processing are further illustrated: multilayer coating simulating the fine structure of plant fibers; dumbbell-like whiskers imitating animal bone; fractal-tree reinforcement by mimicry of branched roots in soil; biomaterial reinforcement and its modification; and fatigue-crack healing and lifetime prolongation of materials. The methodology of biomimetic study is described briefly in the last part of this paper.

关键词: composites;biomimetic design and processing;fractal-tree structure;crack healing;fibers

A Biomimetic Model of Fiber-reinforced Composite Materials

Shihong LI , Ronghui ZHANG , Shaoyun FU , Xin CHEN and Benlian ZHOU(Institute of Metal Research , Academia Sinica , Shenyang , 110015 , China)Qiyun ZENG(Institute of Applied Ecology , Academia Sinica , Shenyang , 110015 , China)

材料科学技术(英)

In thjs paper. bamboo fiber has been. on micro scale. investigated as a helical. multi-layered hollow cylinder, the stiffness featu res of bamboo bast fiber were compared with those of a multifilament yarn in traditional fiber-reinforced composite materials, Moreover. a biomimetic model of the reinforce ment of fiber-reinforced composite materials was proposed by imitating the fine structure of bamboo bast fiber. The results show that the comprehensive stiffness properties of the cornplicated fine struc ture of bamboo fiber is superior over those of traditional fiber-reinforced composites.

关键词:

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共369页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词