J. G. Wang
,
L.C Zhang
,
G.L. Chen and H. Q. Ye(State Key Laboratory for Advanced Metals and Materials
,
University of Science and Technology Beijing
,
Beijing 100083
,
China)(Laboratory of Atomic Imaging of Solids
,
Institute of Metal Research
,
The Chinese Academy of Sciences
,
Shenyang 110015
,
China)
金属学报(英文版)
High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be nucleated either at α2/γ interfaces or at stacking faults on the basal planes of the α2 phase. The growth of deformation-induced γplate is accomplished by the motion of α/6<100> Shockley partials on alternate basal planes (0001)α2, and the α/6<100> Shockley partials move in coordination rather than sweep on (0001)α2 plane one by one. It appears that no atom transportation is involved in this stress-induced α2→γ transfromation.
关键词:
intermetallic compound
,
null
,
null
,
null
,
null
,
null
Advanced Materials
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
关键词:
lithium-ion batteries;carbon nanotube electrodes;enhanced hydrogen;storage;metal-organic frameworks;double-layer capacitors;n-h system;carbide-derived carbons;ammonia borane dehydrogenation;ordered;mesoporous carbons;high-rate performance
F.H. Froes(IMAP
,
University of Idaho
,
Moscow
,
ID 838443026
,
USA Manuscript received 26 August 1996)
金属学报(英文版)
The synthesis, processing and mechanical properties of the light metals, aluminum,magnesium and titanium Produced by advanced techniques are reviewed. Synthesis techniques to be addressed will include rapid solidification, spray deposition, mechanical alloying, plasma Processing and vapor deposition.
关键词:
:synthesis/processing
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
Materials Characterization
Segregation of yttrium induces the formation of Y0.25Zr0.75O2-x and Y0.5Zr0.5O2-y microdomains, with L1(2)- and L1(0)-like ordered structures, in ZrO2-6mol%Y2O3 ceramics in both the sintered and annealed states. The compositions of precipitates such as (chi L), (chi S), (chi SS), and small precipitates formed inside XL, in Cu-11.88Al-5.06Ni-1.63Mn-0.96Ti (wt.%) shape memory alloys have been determined. Under electron beam irradiation, four types of dynamic behavior of the G.P. zones were observed in the Al-6.58Zn-2.33Mg-2.40Cu (wt.%) alloy. The G.P. zone and "G.P. zone-like" defect structures were also distinguished. Lattice distortion profile in the GaAs/InxGa1-xAs superlattice and two-dimensional lattice distortion around a 60 degrees dislocation core in the InAs(x)P(1-)x/InP superlattice were determined. (C) Elsevier Science Inc., 2000. All rights reserved.
关键词:
shape-memory alloys;zirconia;phase;ti;diffraction;crystal
D M DIMIDUK(Wright-Laboratory
,
Materials Directorate
,
WL/MLLM
,
Wright-Patterson AFB
,
OH45433-7817
,
USA)P R SUBRAMANIAN and M G MENDIRATTA (UES
,
Inc.
,
Dayton
,
OH 45432
,
USA)
金属学报(英文版)
Since the late 1980's there have been a number of research efforts aimed at exploring and developing the refractory intermetalllic materials for service at temperatures which compete with the nickel-based superalloys in structural applications. These efforts have documented the physical and mechanical properties of a broad set of compositions. However, only in the last three years have these efforts yielded sufficient experimental results on single selected systems to suggest that damage tolerance, creep resistance and oxidation resistance may be obtained and controlled simultaneously. These findings led to alloy development concepts and approaches which are currently under investigation and are expected to lead to research focused on a smaller set of alloys. An overview of selected alloy development strategies and resulting structural properties is presented herein.
关键词:
: refractory intermetallics
,
null
,
null
Express Polymer Letters
The state-of-art and key problems of carbon nanotube (CNT) based polymer composites (CNT/polymer composites) including CNT/polymer structural composites and CNT/polymer functional composites are reviewed. Based on the results reported up to now, CNTs can be an effective reinforcement for polymer matrices, and the tensile strength and elastic modulus of CNT/polymer composites can reach as high as 3600 MPa and 80 GPa, respectively. CNT/polymer composites are also promising functional composite materials with improved electrical and thermal conductivity, etc. Due to their multi-functional properties, CNT/polymer composites are expected to be used as low weight structural materials, optical devices, thermal interface materials, electric components, electromagnetic absorption materials, etc. However, the full potential of CNT/polymer composites still remains to be realized. A few key problems, such as how to prepare structure-controllable CNTs with high purity and consistently dependable high performance, how to break up entangled or bundled CNTs and then uniformly disperse and align them within a polymer matrix, how to improve the load transfer from matrix to CNT reinforcement, etc, still exist and need to be solved in order to realize the wide applications of these advanced composites.
关键词:
polymer composites;carbon nanotubes;mechanical properties;electrical;properties;thermal properties
Communications in Theoretical Physics
By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d(3) energy matrix adopting C-3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground state, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix.
关键词:
crystal fields;g factors;ruby;high-pressure effects
陶志华
,
李伟华
,
张胜涛
,
侯保荣
腐蚀与防护
通过失重试验、电化学测试以及量子化学计算方法研究了新型杂环噁二唑化合物1-苯基-2-{5-(1,2,4-三氮唑)-1甲基-(1,3,4-噁二唑)-2-硫}-乙酮(PTOE)在0.5 mol/L H2SO4中对Q235钢(碳钢)的缓蚀性能,并用扫描电镜方法观察了碳钢表面的腐蚀形貌.结果表明,PTOE在0.5 mol/L H2SO4中对Q235钢有高达92.7%的缓蚀作用,能同时抑制碳钢腐蚀的阴、阳极反应过程.碳钢的阻抗值随PTOE浓度增加而增大,其在碳钢表面的吸附符合Langmuir等温式.同时用量子化学中的从头算方法对缓蚀剂的分子结构与缓蚀性能的关系进行了研究.
关键词:
缓蚀剂
,
电化学测试
,
失重
,
量子化学计算