欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(62599)
  • 图书()
  • 专利()
  • 新闻()

RECRYSTALLIZATION IN A SPINODAL Cu Ni Fe ALLOY

S.M. Hao , X.J. Hao , G. Zhao and H.X. Li Schoolof Materials and Metallurgy , Northeastern University , Shenyang 110006 , China

金属学报(英文版)

Theinteraction ofspinodaldecomposition and recrystallization process,andthecharacteristic ofrecrystallizationin Cu Ni Fe alloy aged atdifferenttemperaturesaftersolution treatmentandcold rolling have been studied by structural analysis and Vickers hardnesstest. It has shownthat the recrystallization of spinodal Cu Ni Fe alloy might be divided into 2 types:spinodal decomposition, recovery and recrystallization oftwo phase microstructuretook placein the deformed alloy aged below thespinodaltemperature; whilerecrystallization ofsingle phase microstructureand growth offullyrecrystallized grainstook placeinthedeformed al loy aged abovethespinodaltemperature .The deformed alloyaged below thespinodaltemper aturerecrystallizedin cellular morphology.

关键词: spinodaldecomposition , null , null

Improved hydrogen storage performance of Li-Mg-N-H materials by optimizing composition and adding single-walled carbon nanotubes

International Journal of Hydrogen Energy

A systematic investigation on the hydrogen storage properties of Li-Mg-N-H materials with various compositions was performed. Li-Mg-N-H hydrogen storage materials were prepared by mechanically milling LiNH2/MgH2 mixtures with initial molar ratios ranging from 1.5:1 to 3: 1, followed by de/rehydriding at 200 degrees C. It was found that the hydrogen storage capacity of the system was highly dependent on the initial phase ratio of the LiNH2/MgH2 mixture. An optimum hydrogen capacity of about 5 wt% was achieved in the 2.15:1 LiNH2/MgH2 mixture. Different carbon materials, such as the single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes, graphite and activated carbon, were used as additive to improve the hydrogen storage performance. It was found that the dehydriding kinetics of the Li-Mg-N-H material could be markedly improved by adding a small amount of SWNTs, especially in the as-prepared state. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

关键词: hydrogen storage;dehydriding kinetics;carbon nanotubes;arc-discharge method;system;microstructure;desorption;absorption;behaviors;property;imides

First-principles study on influence of alloying element substitution on dehydrogenation ability of Li(4) BN(3) H(10) hydrogen storage materials

Acta Physica Sinica

A first-principles plane-wave pseudopotential method based on the density functional theory is used to investigate the dehydrogenation properties and the influence mechanism of Li(4)BN(3)H(10) hydrogen storage materials. The binding energy, the density of states and the Mulliken overlap population are calculated. The results show that the binding energy of crystal has no direct correlation with the dehydrogenation ability of (LiM)(4)BN(3)H(10)(M = Ni, Ti, Al, Mg). The width of band gap and the energy level of impurity are key factors to affect the dehydrogenation properties of (LiM)(4)BN(3)H(10) hydrogen storage materials: the wider the energy gap is, the more strongly the electron is bound to the bond, the more difficulty the bond breaks, and the higher wile the dehydrogenation temperature be. Alloying introduces the impurity energy level in band gap, which leads the Fermi level to enter into the conduction band and the bond to be weakened, thereby resulting in the improvement of the dehydrogenation properties of Li(4)BN(3)H(10). It is found from the charge population analysis that the bond strengths of N-H and B-H are weakened by alloying, which improves the dehydrogenation properties of Li(4)BN(3)H(10).

关键词: hydrogen storage materials;first-principles calculation;element;substitution;dehydrogenation;linh2

Theoretical studies of g factors and defect structures for cubic, tetragonal, and orthorhombic Fe+ Centers in alkali halides MX (M = Li, Na; X = F, Cl)

Communications in Theoretical Physics

The EPR g factors for cubic, tetragonal and orthorhombic Fe+ centers in alkali halides MX (M = Li, Na; X = F, Cl) are calculated from second-order perturbation formulas of g factors based on cluster approach for 3d(7) ions in three symmetries. From calculations, the g factors of these Fe+ centers in MX crystals are reasonably explained and the defect structural data for the tetragonal and orthorhombic Fe+ centers are estimated. The results are discussed.

关键词: crystal;and ligand-field theory;electron paramagnetic resonance;defect structure;atomic screening constants;spin-orbit interaction;superposition model;resonance-spectra;epr parameters;crystal-field;scf functions;ions;co2+

Effect of Li(3)N additive on the hydrogen storage properties of Li-Mg-N-H system

Journal of Materials Research

The effect of Li(3)N additive on the Li-Mg-N-H system was examined with respect to the reversible dehydrogenation performance. Screening Study with varying Li(3)N additions (5, 10, 20, and 30 mol%) demonstrates that all are effective for improving the hydrogen desorption capacity. Optimally, incorporation of 10 mol% Li(3)N improves the practical capacity from 3.9 wt% to approximately 4.7 wt% hydrogen at 200 degrees C, which drives the dehydrogenation reaction toward completion. Moreover, the capacity enhancement persists well over 10 de-/rehydrogenation cycles. Systematic x-ray diffraction examinations indicate that Li(3)N additive transforms into LiNH(2) and LiH phases and remains during hydrogen cycling. Combined structure/property investigations suggest that the LiNH(2) "seeding" should be responsible for the capacity enhancement, which reduces the kinetic barrier associated with the nucleation of intermediate LiNH(2). In addition, the concurrent incorporation of LiH is effective for mitigating the ammonia release.

关键词: complex hydrides;improvement;mixtures;imides;amide;h-2

Li(1+x)Ni0.166Co0.166Mn0.667O(2.175+x/2)正极材料的喷雾干燥法合成及电化学性能

黄果 , 杨顺毅 , 雷钢铁 , 黄友元 , 岳敏 , 胡社军 , 任建国 , 侯贤华

中国有色金属学报

采用喷雾干燥法制备锂离子电池用层状富锂锰基正极材料Li(1 +x)Ni0.166Co0.166Mn0.667O(2.175+x/2)(x=0.3,0.4,0.5,0.6),通过X射线衍射(XRD)、扫描电子显微镜(SEM)、等离子体发射光谱(ICP)、热重-差热分析(TG-DSC)、比表面积、粒度分布和恒流充放电等测试手段对材料的结构、形貌及电化学性能进行表征.结果表明:所制得的富锂锰基正极材料为三方层状结构(R(3)m)的LiNi1/3Mnv3Co1/3O2和单斜层状结构(C2/m)的Li2MnO3组成的固溶体,且具有多孔球形形貌.当x=0.4时,材料具有最优的电化学性能.在2.0~4.8 V电压范围内,25 mA/g电流密度下材料的首次放电比容量高达277.5 mA·h/g,20周循环后容量保持率达95.3%,500 mA/g电流密度下放电比容量仍达192.5 mA·h/g.

关键词: 锂离子电池 , 正极材料 , 富锂锰基 , 喷雾干燥法

Enhanced Hydrogen Storage Properties of Li-Mg-N-H System Prepared by Reacting Mg(NH(2))(2) with Li(3)N

Journal of Physical Chemistry C

The Li-Mg-N-H system was prepared by reacting magnesium amide [Mg(NH(2))(2)] with lithium nitride (Li(3)N) and investigated with regard to the hydrogen storage properties. Our study shows that the present method is superior to the conventional route in enhancing the reversible dehydrogenation properties. Through optimizing the Li(3)N:Mg(NH(2))(2) ratio in the starting materials, the reversible capacity of U-Mg-N-H system increases to 4.9 wt %, 18% higher than that typically obtained from the Mg(NH(2))(2) + 2LiH mixture at 200 degrees C. Furthermore, increasing the Li(3)N:Mg(NH(2))(2) ratio is effective for mitigating the ammonia release from thus-prepared samples. Combined property/structure investigations indicate that the obtained enhancements should be ascribed to the effects of LiNH(2) and LiH that were in situ generated from the excess Li(3)N. LiNH(2) may promote the dehydrogenation reaction via seeding the reaction intermediate. The concurrently generated LiH acts as an effective ammonia trapping agent. These findings highlight the potential of "intermediate seeding" as a strategy to enhance the reversible hydrogen storage properties of metal-N-H systems.

关键词: complex hydrides;ultrafast reaction;amide;improvement;desorption;linh2;destabilization;mechanism;mixtures;imides

新型特效Na离子吸附剂Li1+xAlxTi2-x(PO4)3的制备和性能研究

孙建之 , 邓小川 , 宋士涛 , 李法强 , 马培华

无机材料学报 doi:10.3321/j.issn:1000-324X.2006.01.028

采用高温固相法合成了新型特效Na离子吸附剂Li1+xAlxTi2-x(PO4)3.通过对不同条件下合成的样品XRD、SEM及其吸附性能的研究表明,少量Al的加入未影响到LiTi2(PO4)3的晶体结构,但使Li1+xAlxTi2-x(PO4)3对Na离子产生了特效吸附作用.当x=0.4时,在pH值为10.0~11.0条件下,Li1+xAlxTi2-x(PO4)3的吸附容量达到11.76mg/g.另外,本文对材料的激光拉曼光谱和红外光谱进行了研究和指认.

关键词: 吸附剂 , 含锂磷酸盐 , 制备 , 固相反应

Calculation of EPR parameters g factors for Ce3+ ion in YBa2Cu3O6+x superconductor

International Journal of Modern Physics B

The perturbation formulae of EPR parameters g factors g(x), g(y) and g(z) for the lowest Kramers doublet of 4f(1) ion in orthorhombic symmetry are established. In these formulae, the contributions of the covalency effects, the admixture between J = 7/2 and J = 5/2 states as well as the second-order perturbation (which is not considered in the previous works) via crystal-field and orbital angular momentum interactions are all included. According to these formulae, and by using the superposition model, the g-factors g., g(y) and g(z) for Ce3+ center in YBa2CU3O6+x superconductor are calculated. The results are discussed.

关键词: YBa2Cu3O6+x;EPR;superposition model;Ce3+;crystal-field

Nanosized Li(4)Ti(5)O(12)/graphene hybrid materials with low polarization for high rate lithium ion batteries

Journal of Power Sources

We report a simple strategy to prepare a hybrid of lithium titanate (Li(4)Ti(5)O(12), LTO) nanoparticles well-dispersed on electrical conductive graphene nanosheets as an anode material for high rate lithium ion batteries. Lithium ion transport is facilitated by making pure phase Li(4)Ti(5)O(12) particles in a nanosize to shorten the ion transport path. Electron transport is improved by forming a conductive graphene network throughout the insulating Li(4)Ti(5)O(12) nanoparticles. The charge transfer resistance at the particle/electrolyte interface is reduced from 53.9 Omega to 36.2 Omega and the peak currents measured by a cyclic voltammogram are increased at each scan rate. The difference between charge and discharge plateau potentials becomes much smaller at all discharge rates because of lowered polarization. With 5 wt.% graphene, the hybrid materials deliver a specific capacity of 122 mAh g(-1) even at a very high charge/discharge rate of 30C and exhibit an excellent cycling performance, with the first discharge capacity of 132.2 mAh g(-1) and less than 6% discharge capacity loss over 300 cycles at 20C. The outstanding electrochemical performance and acceptable initial columbic efficiency of the nano-Li(4)Ti(5)O(12)/graphene hybrid with 5 wt.% graphene make it a promising anode material for high rate lithium ion batteries. (C) 2011 Elsevier B.V. All rights reserved.

关键词: Lithium titanate;Graphene;High rate anode materials;Lithium-ion;batteries;anode material;electrochemical performance;nanocrystalline li4ti5o12;reversible capacity;cyclic performance;spinel li4ti5o12;rate;capability;graphene;composite;insertion

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共6260页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词