LI Chenggong
,
YANG Wanhong
,
LUO Zhiping(Institute of Aeronautical Materials
,
Beijing 100095
,
China FROES F H
,
FREFER A) Institute of Materials and Advanced Processing
,
College of Mines
,
University of Idaho
,
Moscow. ID83843-3026. USA
金属学报(英文版)
Use of mechanically alloying for preparation of Ti-35at.%Al results in significant reduction in crystal size, so the ductility of alloy can be improved Consolidation of Mechanically alloyed γ -TiAl is difficult because of its poor workability. The present paper will discuss recent studies on consolidation behavior by using different methods, such as explosive compaction, hot isostatic pressing, and rapid omnidirectional compaction, etc.. The microstructure and property of the samples are evaluated.
关键词:
: mechanical alloying
,
null
,
null
,
null
Advanced Materials
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
关键词:
lithium-ion batteries;carbon nanotube electrodes;enhanced hydrogen;storage;metal-organic frameworks;double-layer capacitors;n-h system;carbide-derived carbons;ammonia borane dehydrogenation;ordered;mesoporous carbons;high-rate performance
D M DIMIDUK(Wright-Laboratory
,
Materials Directorate
,
WL/MLLM
,
Wright-Patterson AFB
,
OH45433-7817
,
USA)P R SUBRAMANIAN and M G MENDIRATTA (UES
,
Inc.
,
Dayton
,
OH 45432
,
USA)
金属学报(英文版)
Since the late 1980's there have been a number of research efforts aimed at exploring and developing the refractory intermetalllic materials for service at temperatures which compete with the nickel-based superalloys in structural applications. These efforts have documented the physical and mechanical properties of a broad set of compositions. However, only in the last three years have these efforts yielded sufficient experimental results on single selected systems to suggest that damage tolerance, creep resistance and oxidation resistance may be obtained and controlled simultaneously. These findings led to alloy development concepts and approaches which are currently under investigation and are expected to lead to research focused on a smaller set of alloys. An overview of selected alloy development strategies and resulting structural properties is presented herein.
关键词:
: refractory intermetallics
,
null
,
null
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing
A lot of non-equilibrium high technologies have recently been developed in materials processing, such as spray forming; metal atomization by electric fluid dynamics; self-propagating high temperature synthesis; in situ contact reaction process in melt for making composites and electropulsing effect on structure modification and damage reversal etc. A series of non-equilibrium thermophysical problems arise consequently with these high technologies. Not only the real-time measurements are difficult to deal with, but also the principle analyses need to be treated carefully. It would be found that some of the normal thermophysical rules should be evaluated again, when the thermophysical processes under extreme conditions are further studied. Some possible ways for solving these abnormal thermophysical problems are tentatively suggested in this paper, such as the reconstruction of governing functions; the simplified treatment of complex processes and making use of the rules of other disciplines etc. It is known from these examples that a series of non-equilibrium thermophysical problems arising from recent high technologies of materials processing are remained to be actively studied. It gives a virgin land for thermophysicists to explore. (C) 2000 Elsevier Science S.A. All rights reserved.
关键词:
biomimetic;materials processing;non-equilibrium;thermophysical;problems
F.H. Froes(IMAP
,
University of Idaho
,
Moscow
,
ID 838443026
,
USA Manuscript received 26 August 1996)
金属学报(英文版)
The synthesis, processing and mechanical properties of the light metals, aluminum,magnesium and titanium Produced by advanced techniques are reviewed. Synthesis techniques to be addressed will include rapid solidification, spray deposition, mechanical alloying, plasma Processing and vapor deposition.
关键词:
:synthesis/processing
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
G.Q. Zhang
金属学报(英文版)
The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superalloys for aero-engine disks and rings, and powder metallurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.
关键词:
superalloy
,
null
,
null
Haiping XIA
,
Zhaoyang JIANG
,
Jianli ZHANG
,
Jinhao WANG
,
Yuepin ZHANG
,
Qiuhua NIE
材料科学技术(英文)
Water soluble fullerenols were synthesized and incorporated in SiO2, SiO2-TiO2, GPTMS- SiO2, GPTMS-ATPS inorganic and organic-inorganic materials by sol-gel processes. The maximum concentrations of C60 (OH) n and C70 (OH) n in the obtained SiO2 gels were estimated to be about 0.6% and 1.5% in weight, respectively. The characteristics of the UV/visible spectra of fullerenols in H2O and various gels were measured and compared. The thermal stability of fullerenols in gels was investigated with differential thermal analysis (DTA). The results indicate that the absorption features of fullerenols in solid gels are similar to those in H2O and the fullerenols in SiO2 are stable at 400ºC. The optical limiting effect of the fullerenols was investigated preliminarily.
关键词:
Water soluble fullerenol
,
null
,
null
,
null