欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(80209)
  • 图书()
  • 专利()
  • 新闻()

NUMERICAL SIMULATION METHODS AND THEIR APPLICATION IN MATERIAL HOT-WORKING

J. T. Niu , H. T. Li , X. D. Meng and P. Karjaleinen 1) Analysis and Measurement Center , Harbin Institute of Technology , Harbin 150001 , China 2) Department of Mechanocal Engineering , The University of Oulu , Finland

金属学报(英文版)

With the development of modern science and technology, especially computer science, the numerical simulation method has been widely used in material hot-working. Mary achievements have been made in this field by using the numerical simulation method. The numerical simulation method, especially finite element method fully described in this paper.Applications of the numerical simulation method in material hot-working are also discussed. Finally, the future of the numerical simulation method is outlined.

关键词: numerical simulation , null , null

STATISTICAL EVALUATION OF CRITICAL INCLUSION FACTOR FOR SECONDARY RECRYSTALLIZATON IN 3%Si STEEL Lecturer,Department of Materials Engineering,Southwestern Jiaotong University,Chengdu 610031,China

LI Shuchen Southwestern Jiaotong University , Chengdu , ChinaCHEN Mengzhe KE Jun University of Science and Technology Beijing , Beijing , China

金属学报(英文版)

On the basis of statistical data of MnS in the conventional 3% Si steel sheeets after various annealing processes,the critical inclusion factor has been evaluated to be 20 mm~(-1).The inhi- bition of MnS to grain growth has been exactly described.

关键词: 3%Si steel , null , null

Service Performance of Engineering Materials

Andrej Atrens

材料科学技术(英文)

Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.

关键词: Stress corrosion cracking , null , null

Change in Carbon Dioxide (CO2) Emissions From Energy Use in China′s Iron and Steel Industry

SUN Wenqiang , CAI Jiuju , MAO Hujun , GUAN Duojiao

钢铁研究学报(英文版)

As the largest energy consuming manufacturing sector and one of the most important sources of carbon dioxide (CO2) emissions, the China′s iron and steel industry has paid attention to the study of changing trend and influencing factors of CO2 emissions from energy use. The logarithmic mean Divisia index (LMDI) technique is used to decompose total change in CO2 emissions into four factors: emission factor effect, energy structure effect, energy consumption effect, and steel production effect. The results show that the steel production effect is the major factor which is responsible for the rise in CO2 emissions; whereas the energy consumption effect contributes most to the reduction in CO2 emissions. And the emission factor effect makes a weak negative contribution to the increase of CO2 emissions. To find out the detailed relationship between change in energy consumption or steel production and change in CO2 emissions, the correlation equations are also proposed.

关键词: CO2 emissions , energy use , LMDI technique , steel production , energy consumption

A New α Ti Alloy (Ti-4Al-2V) for Marine Engineering

Dong LI , Zhentao YU , Weisheng TANG , Ju DENG

材料科学技术(英文)

NIN has developed a new type of Ti alloy. It is suitable for structure pieces applied in high-temperature and high-pressure water/steam conditions. Its nominal composition is Ti-4Al-2V. In this paper, its microstructure, mechanical properties and corrosion resistance were studied in detail.

关键词:

Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties

Chemical Communications

Crystal facet engineering of semiconductors has become an important strategy for fine-tuning the physicochemical properties and thus optimizing the reactivity and selectivity of photocatalysts. In this review, we present the basic strategies for crystal facet engineering of photocatalysts and describe the recent advances in synthesizing faceted photocatalysts, in particular TiO(2) crystals. The unique properties of faceted photocatalysts are discussed in relation to anisotropic corrosion, interaction dependence of adsorbates, photocatalytic selectivity, photo-reduction and oxidation sites, and photocatalytic reaction order. Ideas for future research on crystal facet engineering for improving the performance of photocatalysts are also proposed.

关键词: shape-controlled synthesis;exposed 001 facets;rutile tio2 nanorods;visible-light photocatalysis;solvent-solute interactions;anatase;titanium(iv) oxide;low-temperature synthesis;ordered solid-phases;platinum nanocrystals;hydrogen-production

(alpha-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China

American Mineralogist

A natural high-pressure phase of titanium oxide with alpha-PbO2-structure has been found in omphacite from coesite-bearing eclogite at Shima in the Dabie Mountains, China. High-resolution transmission electron microscope observations have revealed an orthorhombic lattice, corresponding to alpha-PbO2-type TiO2, with cell parameters a = 0.461 nm, b = 0.540 nm, c = 0.497 nm and space group Pbcn. It occurs as nanometer-thick (< 2 nm) lamellae between multiple twinned rutile crystals, providing additional evidence of very high-pressure, metamorphism at 7 GPa, 900 degrees C. This implies subduction of continental material to a depth of more than 200 kilometers. alpha-PbO-type TiO2 could be an extremely useful index mineral for ultrahigh-pressure.

关键词: high-pressure phase;ries crater;rutile;polymorph;titanium

CORRELATION BETWEEN STRESS COMPONENTS AND STRESS CORROSION CRACKS IN BRASS Lecturer,Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China

QIAO Lijie LIU Rui XIAO Jimei University of Science and Technology Beijing , Beijing , China

金属学报(英文版)

The effects of stress components on nucleation sites and propagation directions of stress cor- rosion cracks in brass were investigated with specimens under mode Ⅱ and mode Ⅲ loadings. The results indicated that under mode Ⅱ loading,stress corrosion cracks nucleated on the site with maximum normal stress component and propagated along the plane perpendieular to the maximum normal stress,under mode Ⅲ loading,the stress corrosion crack was not evident on the 45°plane due to the general corrosion in aqueous solution with high NH_4OH concentra- tion,while stress corroded in aqueous solution with low NH_4OH concentration, numerous cracks with spacings of 10—150μm were found on the 45°plane with maximum normal stress and no stress corrosion cracks was observed on the plane with maximum shear stress.

关键词: stress corrosion cracking , null , null , null

Biomimicry of bamboo bast fiber with engineering composite materials

Materials Science & Engineering C-Biomimetic Materials Sensors and Systems

Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.

关键词: bamboo;bast fiber;biomimetics;engineering composites

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共8021页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词