欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2698)
  • 图书()
  • 专利()
  • 新闻()

THE IMPROVEMENT IN FRICTION AND WEAR RESISTANCE FOR Ta and Ta+C IMPLANTED Cr12 STEEL

J.H. Yang and T.H. Zhang(Nantong Institute of Technology , Nantong 226007 , China)(Radiation Beam and Materials Engineering Lab , Beijing Normal University , Beijing 100875 , China)

金属学报(英文版)

Ta and C ions extracted from a MEVVA ion source were implanted into Cr12 steel, with an implantation dose of (1-5)x1017cm-2, extraction acceleration 42kV, and average ion beam flux about 20-50μA·cm-2. Rutherford backscattering spectrum (RBS) was used to measure the surface composition after Ta and Ta+C implantation. Analysis of phase formed by Ta and C implantation was carried out by X-ray diffraction analysis (XRD). Experiment results showed that the wear rate of the implanted layer dropped 40% for Ta ion implantation and by a factor of 2.7 for Ta+C dual ion implantation. Ta+C dual ion implantation was found to reduce the friction coefficient of Cr12 steel. The wear mechanisms of the implanted layer were discussed.

关键词: wear resistance , null , null

Service Performance of Engineering Materials

Andrej Atrens

材料科学技术(英文)

Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.

关键词: Stress corrosion cracking , null , null

Biomimicry of bamboo bast fiber with engineering composite materials

Materials Science & Engineering C-Biomimetic Materials Sensors and Systems

Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.

关键词: bamboo;bast fiber;biomimetics;engineering composites

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

Science

Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.

关键词: strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior

Development of rapidly quenched soft magnetic materials in China

Shaoxiong ZHOU

材料科学技术(英文)

The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.

关键词:

Preparation and Properties of Smart Thermal Control and Radiation Protection Materials for Multi-functional Structure of Small Spacecraft

Shijie Zhang

材料科学技术(英文)

Considering the unique properties of small spacecraft, such as light weight, low power-consumption and high heat flux density, a new kind of lightweight boron carbide (B4C) radiation-protection coating material was proposed. New techniques for preparing LSMO thermal control coating and B4C radiation-protection coating were developed. The sample piece of multi-functional structure was manufactured by using the proposed materials, and a series of performance tests, such as thermal control and radiation-protection behaviors were evaluated. Test results show that: the emissivity of the multi-functional structure varies from 0.42 to 0.86 at 240 K to 353 K and the phase transition temperature is about 260 K. The electron radiation-protection ability of the multi-functional structure is 3.3 times better than that of Al material. The performance index of this multi-functional structure can meet the requirements for space application in on-board electronic equipment.

关键词: Coating material

Influence of plastic deformation upon the half-width of engineering metallic materials in hard state

Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science

The half-width values of the X-ray diffraction profiles are frequently used to characterize the static strength of a strengthened surface, or the depth distribution of this mechanical parameter, in a strengthened surface layer, especially in a shot-peening affected layer. However, for the unpeened surface and the base material of the shot-peened specimen of an alloy steel treated in hard state, the experimental results shown in this article indicate that uniaxial tensile or compressive plastic deformation increases the yield strengths while it decreases the half-width values. The half-width values of the shot-peened surface and surface layer greatly decrease, whereas the yield strength of this surface remarkably increases. Accordingly, in the authors' opinion, the half-width values could not correctly describe the static strengths of hard metallic materials, and, contrary to the viewpoint put forward by a lot of researchers, the shot-peened surfaces of such materials are work hardened instead of work softened. A model demonstrating that plastic deformation reduces the half-width values by decreasing the second kind internal stresses is developed.

关键词:

STATISTICAL EVALUATION OF CRITICAL INCLUSION FACTOR FOR SECONDARY RECRYSTALLIZATON IN 3%Si STEEL Lecturer,Department of Materials Engineering,Southwestern Jiaotong University,Chengdu 610031,China

LI Shuchen Southwestern Jiaotong University , Chengdu , ChinaCHEN Mengzhe KE Jun University of Science and Technology Beijing , Beijing , China

金属学报(英文版)

On the basis of statistical data of MnS in the conventional 3% Si steel sheeets after various annealing processes,the critical inclusion factor has been evaluated to be 20 mm~(-1).The inhi- bition of MnS to grain growth has been exactly described.

关键词: 3%Si steel , null , null

Development of the technique for fabricating submicron moire gratings on metal materials using focused ion beam milling

Chinese Physics Letters

A focused gallium ion (Ga+) beam is used to fabricate micro/submicron spacing gratings on the surface of porous NiTi shape memory alloy (SMA). The crossing type of gratings with double-frequency (2500 l/mm and 5000 l/mm) using the focused ion beam (FIB) milling are successfully produced in a combination mode or superposition mode. Based on the double-frequency gratings, high-quality scanning electron microscopy (SEM) Moire patterns are obtained to study the micro-scale deformation of porous NiTi SMA. The grating fabrication technique is discussed in detail. The experimental results verify the feasibility of fabricating high frequency grating on metal surface using FIB milling.

关键词:

Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies

Lawrence E. Murr

材料科学技术(英文)

Selective laser melting (SLM) and electron beam melting (EBM) are relatively new rapid, additive manufacturing technologies which can allow for the fabrication of complex, multi-functional metal or alloy monoliths by CAD-directed, selective melting of precursor powder beds. By altering the beam parameters and scan strategies, new and unusual, even non-equilibrium microstructures can be produced; including controlled microstructural architectures which ideally extend the contemporary materials science and engineering paradigm relating structure-properties-processing-performance. In this study, comparative examples for SLM and EBM fabricated components from pre-alloyed, atomized precursor powders are presented. These include Cu, Ti-6Al-4V, alloy 625 (a Ni-base superalloy), a Co-base superalloy, and 17-4 PH stainless steel. These systems are characterized by optical metallography, scanning and transmission electron microscopy, and X-ray diffraction.

关键词: Selective laser melting

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共270页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词