Z.G. Li
,
H.B. Chang
,
T. Y. Hsu
,
Z. Y. Xu
,
and X. Y. Ruan (Department of Plasticity of Technology
,
Shanghai Jiao Tong University
,
Shanghai 200030
,
China)(Department of Metallurgical Engineering
,
Shanghai Technical College of Metallurgy
,
Shanghai 200233
,
China)(Department of Materials Science
,
Shanghai Jiao Tong University
,
Shanghai 200030
,
China)
金属学报(英文版)
Supposing carbon contents of ferrite phases in pearlite precipitating from austenite in multicomponent steel at temperature T and in Fe-C ystem at T' are the same the pearlite formation temperature diference, can be calculated from the FeX phase diagrams and the equilibrium temperature Al. Using Tp and Fe-C binary thermodynamic model, the driving forces for phase transformation from austenite to pearlite in multicomponent steels have been successfully calculated. Through the combination of simplified Zener and Hillert's model for pearlite growth with Johnson-Mehl equation, using data from known TTT diagrams, the interfacial energy parameter and activation energy for pearlite formation can be determined and expressed as functions of chemical composition in steels by regression analysis. The calculated starting curves of pearlitic transformation in some commercial steels agree well with the experimental data.
关键词:
pearlite formation temperature difference
,
null
,
null
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
QIAO Lijie LIU Rui XIAO Jimei University of Science and Technology Beijing
,
Beijing
,
China
金属学报(英文版)
The effects of stress components on nucleation sites and propagation directions of stress cor- rosion cracks in brass were investigated with specimens under mode Ⅱ and mode Ⅲ loadings. The results indicated that under mode Ⅱ loading,stress corrosion cracks nucleated on the site with maximum normal stress component and propagated along the plane perpendieular to the maximum normal stress,under mode Ⅲ loading,the stress corrosion crack was not evident on the 45°plane due to the general corrosion in aqueous solution with high NH_4OH concentra- tion,while stress corroded in aqueous solution with low NH_4OH concentration, numerous cracks with spacings of 10—150μm were found on the 45°plane with maximum normal stress and no stress corrosion cracks was observed on the plane with maximum shear stress.
关键词:
stress corrosion cracking
,
null
,
null
,
null
Zheng FANG
,
Quanru ZHANG
,
Hengzhong ZHANG
,
Yuan FANG
材料科学技术(英文)
The thermoelectrochemistry (TEC), a novel cross discipline, is presented, including the basic equations for a cell and a half-cell reaction, the treatment of experimental data and its application to electro-generative leaching of mineral and to measuring thermodynamic and kinetic data of an electrode reaction. The TEC technology will play an important part in the research on the metallurgical process under various fields.
关键词:
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior