W. L. Zhou
,
J. T. Guo
,
R.S. Chen and J. Y Zhou(Institute of Metal Research
,
The Chinese Academy of Sciences
,
Shenyang 110015
,
China)(Department of Materials Engineering
,
Dalian University of Technology
,
Dalian 116024
,
China)
金属学报(英文版)
Our previous investigation examines the soperplastic behavior of an extruded Ni-28.5Al-20.IFe alloy. Its tensile properties were determined at temperature from 1123Kto 1323K and initial strain rates from 1.0{x 10-2s-1 to 1.04x 10-4s-1. A maximumelongation of 233K was obtained at 1123K and a strain rate Oj 5.2x 10-4s-1. Fur-thermore, microstructural features, such a8 decrease in the avempe gmin Bize afier de-formation at 85dC and 98dC the presence oj many dislocationthee gmins adjacentto grains with a high dislocation density, indicate that dynamic recrystallization hasoccuwed as an decient accotnmodation mechanism. SEM examination Of the fracturesample afier saperplastic defOrmation revealS many voids on the hecture sudece. Bycoerelating with the results Oj TEM observation, it is sopested that the soperplasticdejormation in this alloy should be controlled by a gmin boundarp sliding-based mech-anism accommodated by the movement oj dislocation and dynamic recrpstallization.
关键词:
Ni-Al-Fe intermetallics
,
null
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
Shaoxiong ZHOU
材料科学技术(英文)
The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.
关键词:
QIAO Lijie LIU Rui XIAO Jimei University of Science and Technology Beijing
,
Beijing
,
China
金属学报(英文版)
The effects of stress components on nucleation sites and propagation directions of stress cor- rosion cracks in brass were investigated with specimens under mode Ⅱ and mode Ⅲ loadings. The results indicated that under mode Ⅱ loading,stress corrosion cracks nucleated on the site with maximum normal stress component and propagated along the plane perpendieular to the maximum normal stress,under mode Ⅲ loading,the stress corrosion crack was not evident on the 45°plane due to the general corrosion in aqueous solution with high NH_4OH concentra- tion,while stress corroded in aqueous solution with low NH_4OH concentration, numerous cracks with spacings of 10—150μm were found on the 45°plane with maximum normal stress and no stress corrosion cracks was observed on the plane with maximum shear stress.
关键词:
stress corrosion cracking
,
null
,
null
,
null
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science
The half-width values of the X-ray diffraction profiles are frequently used to characterize the static strength of a strengthened surface, or the depth distribution of this mechanical parameter, in a strengthened surface layer, especially in a shot-peening affected layer. However, for the unpeened surface and the base material of the shot-peened specimen of an alloy steel treated in hard state, the experimental results shown in this article indicate that uniaxial tensile or compressive plastic deformation increases the yield strengths while it decreases the half-width values. The half-width values of the shot-peened surface and surface layer greatly decrease, whereas the yield strength of this surface remarkably increases. Accordingly, in the authors' opinion, the half-width values could not correctly describe the static strengths of hard metallic materials, and, contrary to the viewpoint put forward by a lot of researchers, the shot-peened surfaces of such materials are work hardened instead of work softened. A model demonstrating that plastic deformation reduces the half-width values by decreasing the second kind internal stresses is developed.
关键词: