{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"一种水泥混凝土用聚合物共混物的微观形态及其变化机理研究表明,聚合物总浓度不超过20%时,等量配比的共混物微观形态随聚合物总 浓度的增大而逐渐由致密体结构变成网络状结构;聚合物总浓度为20%时,不同配比的共混物 微观形态以等量配比的共混物的网络状结构最均匀为特征;B聚合物在共混体系中兼起消泡剂 作用。同时探讨了各共混物微观形态与两聚合物分子链在共混体系中的物理化学行为之间的关系。","authors":[{"authorName":"赵文俞","id":"61a456c3-3a4f-4e4e-8e68-4f42182af4eb","originalAuthorName":"赵文俞"},{"authorName":"官建国","id":"0c97e036-890f-4dee-a9e0-acc9f95d768b","originalAuthorName":"官建国"},{"authorName":"陈文怡","id":"63f75c03-0b02-4df4-b74e-9972acf8791e","originalAuthorName":"陈文怡"},{"authorName":"王勤燕","id":"0db8d7a0-03f4-42d7-8484-44282c892a00","originalAuthorName":"王勤燕"}],"doi":"","fpage":"167","id":"40358a26-a4e1-4f56-ad02-069616d9e255","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"eaee6315-e88f-49fe-92a8-db7f9f954710","keyword":"聚合物共混物","originalKeyword":"聚合物共混物"},{"id":"c73ff73a-7a0c-435d-a033-9a6464f8ac78","keyword":"微观形态及其变化机理","originalKeyword":"微观形态及其变化机理"},{"id":"94ae7dc4-3763-4a37-a2f1-7aa75c7486ff","keyword":"浓度因素","originalKeyword":"浓度因素"},{"id":"eb7543fe-180c-43ae-a324-cf3fc24d71d0","keyword":"配比因素","originalKeyword":"配比因素"}],"language":"zh","publisherId":"gfzclkxygc200102043","title":"一种水泥混凝土用聚合物共混物的微观形态及其变化机理研究","volume":"17","year":"2001"},{"abstractinfo":"为了确定测量酸性蚀刻液中低浓度亚铜含量的最佳条件,提高工作效率,采用硫酸高铈法,通过单因素实验研究了几种因素对测定结果的影响,并结合正交实验确定了几种影响因素的最佳取值.结果表明:滴定时间、HCl的浓度、FeCl3,加入量、测定温度和取样量对测定结果的影响比较显著,而Cu2+的含量对测定结果的影响则不大;在常温条件下(20℃)于5 min内检测低浓度亚铜含量(5 g/L),HCl浓度为7 mol/L,配制的FeCl,溶液加入量10 mL,取样量为10 mL,此条件下亚铜含量的测定结果相对误差可达-0.8%,","authors":[{"authorName":"王寅初","id":"70bde6e7-5770-4e8a-9302-5309d129123e","originalAuthorName":"王寅初"},{"authorName":"李德良","id":"3bc5f3af-6afe-4374-983a-e45e2038a177","originalAuthorName":"李德良"},{"authorName":"董明琪","id":"faf75080-e0ce-4bec-9ad1-e1a28cf25d6b","originalAuthorName":"董明琪"},{"authorName":"徐玉霞","id":"23aa4dc2-1cec-4b18-bb48-19c8ab93a92c","originalAuthorName":"徐玉霞"}],"doi":"10.3969/j.issn.1001-3660.2010.05.030","fpage":"107","id":"45580d72-bf2f-4726-8fdf-b53073d0046c","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"39bb5944-c3b3-4f01-9146-41019b762287","keyword":"低浓度亚铜","originalKeyword":"低浓度亚铜"},{"id":"4b65ef97-5873-45b9-b6d1-d6f8f64cc1eb","keyword":"影响因素","originalKeyword":"影响因素"},{"id":"5ba6cf28-921c-45c0-be21-f9dfbc47f859","keyword":"正交实验","originalKeyword":"正交实验"},{"id":"0274e8b5-90a9-41d9-86f9-198cc294cca5","keyword":"酸性蚀刻液","originalKeyword":"酸性蚀刻液"}],"language":"zh","publisherId":"bmjs201005030","title":"影响低浓度亚铜测定的因素","volume":"39","year":"2010"},{"abstractinfo":"利用近20年监测数据,对洞庭湖总氮(TN)和总磷(TP)浓度的时空分布特征及其三峡工程运行后的变化进行了分析.结果表明,洞庭湖 TN 和 TP 浓度的年均值分别为1.12—2.06 mg·L-1和0.062—0.146 mg·L-1,TN浓度呈显著上升趋势(P<0.05),TP浓度变化平稳.TN和TP浓度总体均表现为枯水期>平水期>丰水期,其中枯水期、平水期与丰水期TN浓度差异具有统计学意义( P<0.05).下游S6—S11断面TN浓度明显高于上游S1—S5断面,除S6断面外,洞庭湖各断面之间TP浓度相差不大;TN浓度总体表现为东洞庭湖>南洞庭湖>西洞庭湖,各湖区相互之间TN浓度差异具有统计学意义( P<0.05),TP浓度总体表现为西洞庭湖>东洞庭湖>南洞庭湖.三峡工程运行前后,TN浓度的时空分布基本保持一致;TP浓度的季节分布由三峡工程运行前的平水期>枯水期>丰水期变化为三峡工程运行后的枯水期>平水期>丰水期,其空间分布由三峡工程运行前的东洞庭湖>西洞庭湖>南洞庭湖变化为三峡工程运行后的西洞庭湖>东洞庭湖=南洞庭湖.洞庭湖TN和TP浓度的空间分布特征与其污染来源有关.三峡工程运行前后洞庭湖TP浓度的时空分布格局变化与其水沙条件变化有关.","authors":[{"authorName":"张光贵","id":"df7d92c1-2e2a-48de-a5ff-4b56d116bd9c","originalAuthorName":"张光贵"},{"authorName":"卢少勇","id":"927db156-22f8-456b-8645-d25e5facd749","originalAuthorName":"卢少勇"},{"authorName":"田琪","id":"aad5a436-727c-4b2c-9658-f581cee799bd","originalAuthorName":"田琪"}],"doi":"10.7524/j.issn.0254-6108.2016.11.2016040501","fpage":"2377","id":"96942b71-b137-49bc-9216-5bde020bfd59","issue":"11","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"5bb402af-76fe-42e5-8b63-9e7f1b7d50d7","keyword":"三峡工程","originalKeyword":"三峡工程"},{"id":"c154aa6f-6b02-40f6-8d06-3f8d962d7883","keyword":"TN和TP","originalKeyword":"TN和TP"},{"id":"5a062ab2-ea79-45e5-80a4-0bbd38cbbd3e","keyword":"时空变化","originalKeyword":"时空变化"},{"id":"1952b476-ffec-4d6a-96da-2587ce97a57c","keyword":"洞庭湖","originalKeyword":"洞庭湖"}],"language":"zh","publisherId":"hjhx201611018","title":"近20年洞庭湖总氮和总磷浓度时空变化及其影响因素分析?","volume":"35","year":"2016"},{"abstractinfo":"以膜传质阻力的变化来表征膜污染的状况,在一体式膜-生物反应器处理高浓度有机废水的条件下,分别考察了抽吸时间、膜通量和混合液性质对膜传质阻力的影响,并分析了SS浓度和上清液溶解性有机物浓度(COD)与膜传质阻力之间的关系.结果表明,在曝气量相同,污泥浓度稳定在13 g/L左右,停抽时间为3 min时,适宜的抽吸时间为10 min,膜通量为10 L/(m2·h);膜传质20 min的阻力R20与SS浓度和上清液COD浓度的定量关系式为R20=9.129E(+9)*COD0.449 7SS1.018 9;膜外表面污泥层的迅速沉积和膜内表面微生物的滋生是高微生物浓度条件下膜-生物反应器膜污染的主要原因.","authors":[{"authorName":"王颖","id":"f32f210b-93e3-4432-a007-63eeb146a832","originalAuthorName":"王颖"},{"authorName":"黄霞","id":"5b150013-1eea-48bc-8973-fe8c183dda71","originalAuthorName":"黄霞"},{"authorName":"袁其朋","id":"46e87dbd-f917-4801-b4bf-bb51283e046f","originalAuthorName":"袁其朋"}],"doi":"10.3969/j.issn.1007-8924.2004.01.001","fpage":"1","id":"401f94cf-bab7-4a60-a8a1-f3f2f622da55","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"d6b5ad26-169f-40cf-9686-eda2547235d7","keyword":"膜-生物反应器","originalKeyword":"膜-生物反应器"},{"id":"ccc728ad-108d-4e9f-8317-1c4af3c5270f","keyword":"高浓度有机废水","originalKeyword":"高浓度有机废水"},{"id":"26710e2b-5cb7-4516-bdd1-09cf798f529e","keyword":"膜污染","originalKeyword":"膜污染"},{"id":"f0999f09-4cbc-4ce8-9698-9219c76030bc","keyword":"抽吸时间","originalKeyword":"抽吸时间"},{"id":"639e7d83-feba-44a2-af7c-5af7f3d27f3c","keyword":"膜通量","originalKeyword":"膜通量"},{"id":"798de861-7c79-4bb4-ae49-614e604c78d6","keyword":"污泥浓度","originalKeyword":"污泥浓度"},{"id":"e809641c-9adc-411a-bba4-2a466876aba0","keyword":"溶解性有机物","originalKeyword":"溶解性有机物"}],"language":"zh","publisherId":"mkxyjs200401001","title":"膜-生物反应器处理高浓度有机废水膜污染影响因素的研究","volume":"24","year":"2004"},{"abstractinfo":"低温、低浓度镀铬具有其独特的优点,已推广使用多年。本文根据多年的生产实践,总结了低温、低浓度镀铬中铬酐浓度、硫酸根浓度、稀土添加剂、温度、电流密度以及阳极等因素对镀液、镀层性能的影响,并提出了管理措施。","authors":[{"authorName":"王贵昆","id":"7986375f-4d62-47a8-9ce4-68169652a9cd","originalAuthorName":"王贵昆"},{"authorName":"刘德才","id":"e53baed8-05c9-4a86-9c91-be59a07e90cc","originalAuthorName":"刘德才"},{"authorName":"谢洪波","id":"d846692a-7957-49ba-b78c-3f412c52010f","originalAuthorName":"谢洪波"},{"authorName":"张来祥","id":"34ec46ba-9de7-4aa6-b3e0-ff0a02a63cc5","originalAuthorName":"张来祥"}],"doi":"10.3969/j.issn.1004-227X.2001.03.006","fpage":"21","id":"4eb07ec7-31df-43e0-9513-7dcb9e157db9","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"cb80edba-4c4b-43ec-b222-86c1f9d5fa8a","keyword":"镀铬","originalKeyword":"镀铬"},{"id":"74c9456f-7b04-4fd9-bc01-f2fd40e1708d","keyword":"低温","originalKeyword":"低温"},{"id":"6ac2a18b-2d61-438f-ba50-53e2640ed4b1","keyword":"低铬酐浓度","originalKeyword":"低铬酐浓度"}],"language":"zh","publisherId":"ddyts200103006","title":"低温、低浓度镀铬工艺的控制","volume":"20","year":"2001"},{"abstractinfo":"","authors":[{"authorName":"邬承就","id":"9646d7a7-4681-4cf6-b7b0-f3297acab0fc","originalAuthorName":"邬承就"}],"doi":"","fpage":"247","id":"085380a0-1f97-4843-a513-1798264733c9","issue":"z1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"3837a19d-ce30-4ffe-b429-66016445a44a","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"rgjtxb981994z1278","title":"钛宝石的优值、品质因素、掺杂浓度和元件长度","volume":"","year":"1994"},{"abstractinfo":"为了确立最佳的碱性CuCl2蚀刻工艺条件,提高工作效率,采用烧杯静态吊片蚀刻法,研究了影响蚀刻速率的因素.主要研究结果如下:1)在蚀刻时间为5min时,单因素试验得出的适宜的工艺范围为:Cu2+的质量浓度约为140~180g/L,Cl-的质量浓度为4.8~6.5mol/L,pH为8.2~9.0,操作温度为48~55℃;2)正交试验结果表明,在Cu2+的质量浓度为160g/L,Cl-的质量浓度为5.5mol/L,pH为8.8,操作温度为50℃时,蚀刻状态最好,静态蚀刻速率可达到5.84μm/min.","authors":[{"authorName":"莫凌","id":"8ce9b14a-cad9-49c9-8bed-72889dc8f142","originalAuthorName":"莫凌"},{"authorName":"李德良","id":"84ffd86f-ef91-4b8c-a05f-038c43ddd000","originalAuthorName":"李德良"},{"authorName":"杨焰","id":"1788d07d-c75f-438f-beb3-e9806a0c5ba9","originalAuthorName":"杨焰"},{"authorName":"李佳","id":"e0108647-1b90-4483-92b7-f5c8d6380f99","originalAuthorName":"李佳"}],"doi":"10.3969/j.issn.1001-3660.2009.01.020","fpage":"54","id":"f49ebb37-69e6-4b84-b009-2d93c555bab0","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"762023ca-bda1-40cd-98ea-a56ed58b047c","keyword":"碱性蚀刻液","originalKeyword":"碱性蚀刻液"},{"id":"8dc517ef-425a-4cb9-ad5d-1914541ab543","keyword":"蚀刻速率","originalKeyword":"蚀刻速率"},{"id":"4d62d540-0d53-4a29-9663-a32b1e26a0e2","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"5930c50f-88c6-42c5-a6cd-df34bff05736","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"bmjs200901020","title":"碱性蚀刻液影响因素的研究","volume":"38","year":"2009"},{"abstractinfo":"为了研究室内甲醛浓度散发规律,对天津某住宅小区房间进行为期40d甲醛浓度现场测试,测试区域为餐桌、电视柜、沙发以及房间几何中心区域.实测发现甲醛浓度由最高值0.46 mg· m-3开始降低后进入以0.19 mg·m-3平稳散发阶段,31 d后接近于直线状态,是处理甲醛污染的最佳时机.并且发现在沙发区域甲醛浓度值最高,达到0.33 mg·m-3,在房间几何中心甲醛浓度值最低为0.01 mg·m-3,在封闭条件下散发1个月后,甲醛浓度4个区域均不能达到室内空气质量标准要求,超标倍数达到了1-4倍,沙发区域比其他3个区域甲醛浓度都高出3倍左右.","authors":[{"authorName":"李蒙蒙","id":"e4862460-02ee-4756-a784-77847c1324c6","originalAuthorName":"李蒙蒙"},{"authorName":"任绳凤","id":"e05a8dd4-672d-4b59-894e-e6f521ff9a81","originalAuthorName":"任绳凤"},{"authorName":"常茹","id":"42b1566f-80e8-43ac-9d34-0724acf1be47","originalAuthorName":"常茹"},{"authorName":"温静","id":"1aaf0e1c-b830-4740-9c6e-80754249a3e7","originalAuthorName":"温静"},{"authorName":"李宪莉","id":"60f4f307-1f87-4c58-a3ea-041e34d4c547","originalAuthorName":"李宪莉"}],"doi":"10.7524/j.issn.0254-6108.2017.05.2016090801","fpage":"960","id":"1b72dcdc-f487-4799-a36f-2d70b79e87c3","issue":"5","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"b1d4055b-b176-4e5d-85e8-7a443bae9de9","keyword":"甲醛","originalKeyword":"甲醛"},{"id":"31976eff-883e-49c4-92b6-80033291f27d","keyword":"板式家具","originalKeyword":"板式家具"},{"id":"8c7596ba-4cf0-4201-a15b-a998690267ad","keyword":"浓度散发","originalKeyword":"浓度散发"},{"id":"86fee19e-57b9-42c5-aa61-6ecfcaec1577","keyword":"实测研究","originalKeyword":"实测研究"}],"language":"zh","publisherId":"hjhx201705003","title":"板式家具甲醛浓度散发实测","volume":"36","year":"2017"},{"abstractinfo":"根据污染扩散烟雾粒子的成像理论、粒子光散射原理和数字图像技术,建立了烟雾粒子非定常瞬态积分浓度与其散射图像强度之间的数学关系,通过烟雾粒子散射图像强度的数字化分析和处理来定量测量非定常瞬态污染扩散相对瞬态积分浓度场.并利用该方法对烟雾扩散的非定常瞬态积分浓度场进行了实际测量.","authors":[{"authorName":"卢曦","id":"900d72b2-6b13-4eff-a0de-fca61ff4242b","originalAuthorName":"卢曦"},{"authorName":"吴文权","id":"79777f41-3930-4ee4-99df-926338b3a8cd","originalAuthorName":"吴文权"}],"doi":"","fpage":"761","id":"7d1b39c9-066c-4eee-bc3c-d87b4b5e60fa","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"eac3e097-6b29-4902-9281-f32fe0fd645b","keyword":"瞬态积分浓度场","originalKeyword":"瞬态积分浓度场"},{"id":"11731a8b-226f-4d2d-b550-a457f12ccb38","keyword":"粒子散射","originalKeyword":"粒子散射"},{"id":"14f98056-a195-490f-8c55-2e4b037c0e51","keyword":"测量方法","originalKeyword":"测量方法"},{"id":"7c1dd58b-40ab-4d1a-805d-2f390b78cf30","keyword":"数字图像","originalKeyword":"数字图像"}],"language":"zh","publisherId":"gcrwlxb200405011","title":"瞬态积分浓度场的测量研究","volume":"25","year":"2004"},{"abstractinfo":"研究不同苛性比(1.47~4.44)、不同氧化钠浓度(50~382 g/L)的铝酸钠溶液紫外吸收光谱,对比发现高浓度铝酸钠溶液在320~340 nm处出现一个新的吸收峰,结合该处吸收峰随时间的变化特征,反演出320~340 nm处吸收峰对应的离子结构;利用量子化学计算铝酸钠溶液中可能存在的含铝离子或分子的紫外吸收峰以验证反演的离子结构.结果表明:随着氧化钠浓度和苛性比的增大以及时间的延长,铝酸钠溶液中聚合离子的数量以及聚合的复杂程度均呈上升趋势;320~340 nm处出现的新吸收峰为在高浓度溶液中出现的以—Al—(OH)2—Al—桥连的聚合离子,其中铝离子的配位数为4或者5.","authors":[{"authorName":"黄静","id":"e18feb1b-a463-4dd1-ab8d-4de153301145","originalAuthorName":"黄静"},{"authorName":"尹周澜","id":"4170e723-544a-4b73-9536-10c5bb32cb11","originalAuthorName":"尹周澜"},{"authorName":"刘伟","id":"38cc75a6-ebfb-4ebf-a27d-508410fdac17","originalAuthorName":"刘伟"},{"authorName":"韦亭如","id":"c6a2eacb-0c94-4b83-beeb-99b883ebb779","originalAuthorName":"韦亭如"},{"authorName":"丁治英","id":"32a5dc30-e1f2-483f-8c3a-e4040b2eb676","originalAuthorName":"丁治英"}],"doi":"","fpage":"379","id":"51967a13-5840-4aaa-82ab-44878f326190","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"ff4cd90a-d1a8-4e70-a046-adcd6b8af6b0","keyword":"铝酸钠溶液","originalKeyword":"铝酸钠溶液"},{"id":"27260501-5a2c-4263-93c7-181cf4a0b89a","keyword":"紫外吸收光谱","originalKeyword":"紫外吸收光谱"},{"id":"7d97283b-1fb8-44ef-8add-96f6080c1577","keyword":"量子化学计算","originalKeyword":"量子化学计算"}],"language":"zh","publisherId":"zgysjsxb201702019","title":"高浓度铝酸钠溶液结构","volume":"27","year":"2017"}],"totalpage":2940,"totalrecord":29400}