{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"生产节材型产品LP板和TRB板需要解决变厚度轧制参数计算问题,为此利用作用在微元体上的力平衡关系分别推导了趋薄轧制和趋厚轧制的力平衡微分方程,称为VGR方程。推导过程中考虑了轧辊在垂直方向上刚性位移速度vy的影响,获得了VGR方程对趋薄、趋厚轧制的统一表达形式,验证了Karman方程是VGR方程在vy=0时的特例。本研究为变厚度板材轧制参数的理论研究奠定了基础。","authors":[{"authorName":"刘相华","id":"8b5492a2-b132-449f-91de-1bd668092995","originalAuthorName":"刘相华"},{"authorName":"张广基","id":"6dcda548-e360-4b03-839a-fa646471150a","originalAuthorName":"张广基"}],"doi":"","fpage":"10","id":"2fdc3d11-f8cb-4038-adfe-8d823137d296","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"3ad61393-e047-4ac7-9d7c-15a74aeee01e","keyword":"变厚度轧制","originalKeyword":"变厚度轧制"},{"id":"db497b00-3b07-45e8-a2ea-1484f7c3fd97","keyword":"力平衡微分方程","originalKeyword":"力平衡微分方程"},{"id":"a4fbd30f-11ea-4767-947d-95fa7ac4fb6b","keyword":"LP板","originalKeyword":"LP板"},{"id":"50043d0a-e62d-4505-92f0-688e1bdff870","keyword":"TRB板","originalKeyword":"TRB板"}],"language":"zh","publisherId":"gtyjxb201204003","title":"变厚度轧制过程力平衡微分方程","volume":"24","year":"2012"},{"abstractinfo":"基于离散化的思想建立了一种变厚度轧制辊缝设定方程;通过建立空载和负载辊缝闭环控制方程,给出了一种变厚度轧制辊缝动态控制模型;在实验室四辊轧机上对 DP590双相钢进行了单厚度过渡区的变厚度轧制,并对轧后的板材(TRB 板)进行模拟连续退火试验,研究了TRB板连续退火后不同厚度位置处的组织和力学性能.结果表明:在50 mm 长的变厚度区中,板厚度的实际值与设定值之间的最大偏差为0.08 mm,变厚度区的实际长度和设定值之间的偏差为0.3 mm;TRB板在连续退火过程中的温度跟随性好,温度偏差不大;薄区的抗拉强度和伸长率均高于厚区的,分别高65 MPa和2.8%,屈服强度与厚区的相当;结合工艺可行性并基于组织性能的有效控制,建议根据厚区的厚度来制定冷轧双相钢TRB板的连续退火工艺.","authors":[{"authorName":"徐文婷","id":"c158788b-f167-4046-abac-f1b5347448b5","originalAuthorName":"徐文婷"},{"authorName":"余伟","id":"59aa061d-f815-4489-b6e1-d9c38c0770b8","originalAuthorName":"余伟"},{"authorName":"孙广杰","id":"a8c83e06-c2c4-4da2-962b-e4d08e4837e8","originalAuthorName":"孙广杰"}],"doi":"10.11973/jxgccl201609015","fpage":"68","id":"3b914966-3651-44f2-bf87-fd79700da326","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"585bb2c3-2710-4e4c-8727-e8b5d2337bd6","keyword":"变厚度轧制","originalKeyword":"变厚度轧制"},{"id":"eb7aa948-b47d-4cb8-add3-3c51892c5076","keyword":"双相钢","originalKeyword":"双相钢"},{"id":"b960833d-bc8c-46bc-a617-9aa723bbc842","keyword":"TRB板","originalKeyword":"TRB板"},{"id":"054cd0f8-a194-4d1f-8c8d-e60bc761c86f","keyword":"厚度控制模型","originalKeyword":"厚度控制模型"},{"id":"adb78653-4ef3-47d4-b1ad-7dd34492365f","keyword":"连续退火","originalKeyword":"连续退火"}],"language":"zh","publisherId":"jxgccl201609015","title":"DP590双相钢的变厚度轧制及连续退火工艺","volume":"","year":"2016"},{"abstractinfo":"生产节材型产品LP板和TRB板需要解决变厚度轧制参数计算问题,为此利用作用在微元体上的力平衡关系分别推导了趋薄轧制和趋厚轧制的力平衡微分方程,称为VGR方程。推导过程中考虑了轧辊在垂直方向上刚性位移速度vy的影响,获得了VGR方程对趋薄、趋厚轧制的统一表达形式,验证了Karman方程是VGR方程在vy=0时的特例。本研究为变厚度板材轧制参数的理论研究奠定了基础。","authors":[{"authorName":"刘相华","id":"f321c31a-47ab-4f5d-a19c-3c9e3076c244","originalAuthorName":"刘相华"},{"authorName":"张广基","id":"3dbbca82-0dda-4952-825d-4837888ea98e","originalAuthorName":"张广基"}],"categoryName":"|","doi":"","fpage":"10","id":"bed11d4f-db38-483e-a32e-8df21e283f8f","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"f7dbd874-86aa-4379-97c8-b176ca3d48fd","keyword":"变厚度轧制 ","originalKeyword":"变厚度轧制 "},{"id":"7786dff8-5a00-4b1b-a0e6-acd7d81a1a09","keyword":" force equilibrium differential equations ","originalKeyword":" force equilibrium differential equations "},{"id":"680e9a2d-017b-4d20-9677-871aa7c1e81b","keyword":" longitude profile plate ","originalKeyword":" longitude profile plate "},{"id":"6f4ab98f-f325-45ab-beca-5ebf1b5164ec","keyword":" tailor rolled blank","originalKeyword":" tailor rolled blank"}],"language":"zh","publisherId":"1001-0963_2012_4_2","title":"变厚度轧制过程力平衡微分方程","volume":"24","year":"2012"},{"abstractinfo":"为实现高精度的变厚度轧制,需要对变厚度轧制厚度控制模型进行研究.基于离散化的控制思想和轧制弹跳方程建立了一种TRB变厚度轧制辊缝设定模型,用于单机架可逆式四辊冷轧机厚度控制系统.研究了辊缝变化的非线性规律,基于误差分析提出了确定离散区间的方法;给出了一种TRB辊缝控制系统结构以及空载辊缝闭环和负载辊缝闭环的控制方程,并在实验四辊轧机上进行了单厚度过渡区的TRB轧制.结果表明,采用离散化的辊缝设定方法可以实现TRB板的50 mm变厚度区,尺寸最大厚度偏差为0.08 mm,长度偏差<1 mm.","authors":[{"authorName":"余伟","id":"76c344d3-365a-45ca-8511-77b0271feca5","originalAuthorName":"余伟"},{"authorName":"孙广杰","id":"3636a873-f649-4937-9495-157cebc626b1","originalAuthorName":"孙广杰"},{"authorName":"张飞","id":"00e6c65e-ba00-4a42-b5a8-f7a410aaca49","originalAuthorName":"张飞"}],"doi":"","fpage":"41","id":"ae18bfd0-95cd-46d4-870f-63b4b173d782","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"14f71aca-9e27-48c1-9eea-1adc9de39b04","keyword":"模型","originalKeyword":"模型"},{"id":"300360f0-552b-4032-a0fb-53b337d6bb7b","keyword":"辊缝设定","originalKeyword":"辊缝设定"},{"id":"bd278c5d-27d6-49b1-9b2e-41bd9813a75b","keyword":"离散化","originalKeyword":"离散化"},{"id":"7d3fc87c-70ba-48c5-bb6f-88c1c4d42caf","keyword":"薄板","originalKeyword":"薄板"},{"id":"af387da6-4023-44a7-be7a-b429ba7577d7","keyword":"变厚度轧制","originalKeyword":"变厚度区轧制"}],"language":"zh","publisherId":"clkxygy201403008","title":"变厚度区薄板轧制的辊缝设定模型与试验","volume":"","year":"2014"},{"abstractinfo":"研究了一种变厚度FRP曲面夹芯板的受力性能.利用有限元软件,在拉伸、剪切和弯曲作用下,分析变厚度FRP曲面夹芯板应力分布情况,分析结果得出,应力的最大值发生在支座部位并沿着板长减小.基于Tsai-Wu准则和第一、三主应力,在拉伸、剪切和弯曲组合荷载作用下,考察面层厚度、芯部厚度和铺层方向对破坏模式的影响,分析结果表明,分别增大面层厚度或芯部厚度,或采用0/90/0/90铺层角度,都可以提高夹芯板强度性能,为GFRP曲面夹芯板设计提供指导.","authors":[{"authorName":"袁谱","id":"51bd8b72-fe33-4d73-8fc4-b88d0b05f203","originalAuthorName":"袁谱"},{"authorName":"张攀","id":"ae83b98a-000b-4e85-a98a-ce2a90a18da3","originalAuthorName":"张攀"},{"authorName":"冯鹏","id":"551ff70b-18e3-45d4-ae74-f0d3f1b6c1a8","originalAuthorName":"冯鹏"}],"doi":"10.3969/j.issn.1003-0999.2012.05.002","fpage":"9","id":"a78d32e6-ef5f-4356-942a-33f2038f97d3","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"cc781cc2-77a6-47bd-b32a-3eefa42fb1ab","keyword":"Tsai-Wu准则","originalKeyword":"Tsai-Wu准则"},{"id":"d67e32dd-57f5-4028-8dbf-32712a385886","keyword":"第一、三主应力","originalKeyword":"第一、三主应力"},{"id":"5a5005a8-0e46-4381-9264-874ff7093a4e","keyword":"荷载组合","originalKeyword":"荷载组合"},{"id":"0e9fb580-de15-4e90-b930-879705706a08","keyword":"变厚度","originalKeyword":"变厚度"},{"id":"bd0a172a-8091-463c-ade8-76c313b47ed1","keyword":"曲面夹芯板","originalKeyword":"曲面夹芯板"}],"language":"zh","publisherId":"blgfhcl201205002","title":"变厚度FRP曲面夹芯板受力性能分析","volume":"","year":"2012"},{"abstractinfo":"以S-2玻璃纤维/环氧648变厚度层板为研究对象,采用热压罐工艺成型,考察了不同铺层方式和阶梯宽度下缺陷的形成情况.研究结果表明,由于厚度梯度的存在,层板中容易产生纤维分布不均、富树脂、孔隙和分层缺陷,这与树脂的二维流动、纤维的滑移和结构的不对称性有关,铺层方式对各种缺陷影响显著.变厚度层板成型过程中倾角减小使得尺寸难以预测和控制,成型过程中应尽量避免树脂的流动.","authors":[{"authorName":"邓火英","id":"c420cd1e-809a-4ebe-bb12-b390a827ee65","originalAuthorName":"邓火英"},{"authorName":"顾轶卓","id":"2109ab11-845c-428e-832f-32bd85e40037","originalAuthorName":"顾轶卓"},{"authorName":"李敏","id":"a9885940-7e3f-4427-aa72-76cd3790d00c","originalAuthorName":"李敏"},{"authorName":"张佐光","id":"0d240e07-6e6a-4e91-a070-59941cf2f6f7","originalAuthorName":"张佐光"}],"doi":"10.3969/j.issn.1007-2330.2007.06.017","fpage":"65","id":"4387afb7-8448-4a53-882f-ad1d61c44668","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"968ba110-c5e8-4398-b52a-64b7b02e8df9","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"711c4333-c81a-40d4-b984-840a6144e06a","keyword":"热压罐成型","originalKeyword":"热压罐成型"},{"id":"5c2b9768-0848-4d86-a1ad-5882f3d69f89","keyword":"变厚度层板","originalKeyword":"变厚度层板"},{"id":"be489413-442d-4cfa-ba47-ac50955a4827","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"yhclgy200706017","title":"热压罐成型变厚度层板缺陷研究","volume":"37","year":"2007"},{"abstractinfo":"利用ABAQUS/Explicit模拟了变厚度轮辐双道次强力旋压过程,给出了建模和分析结果.轮辐旋压成形伴随板坯的剧烈减薄,收口区域较难成形,减薄率达50%,在计算中,轮辐有限元网格畸变严重,为此运用ALE技术改善网格质量,提高了计算精度.对模拟的旋压轮辐厚度与实验测量值进行了对比,二者吻合较好,验证了计算模型和结果的可靠性.通过ABAQUS/Standard计算了轮辐旋压成形后的回弹变形量和残余应力,分析成形后轮辐等效应变分布及回弹特征,研究发现,回弹变形量与旋压成形时壁厚变化量成正比.","authors":[{"authorName":"王彦菊","id":"2ec9ee79-74e7-4c1b-b226-f5ffbdff88ee","originalAuthorName":"王彦菊"},{"authorName":"方刚","id":"d2ecdfd1-84bc-4e53-a7ad-7b9aafc67f03","originalAuthorName":"方刚"},{"authorName":"张剑寒","id":"ef72a0ff-484a-4905-9cf7-ffcd2da73ee8","originalAuthorName":"张剑寒"},{"authorName":"曾攀","id":"e60ef257-e0bb-4f8b-900b-5e4e49de56b2","originalAuthorName":"曾攀"},{"authorName":"张小格","id":"8b9493a9-aa49-4b13-ab2a-a84b41dfc53e","originalAuthorName":"张小格"},{"authorName":"石刚","id":"7e5234f4-e120-413e-a072-916f26479d54","originalAuthorName":"石刚"}],"doi":"","fpage":"103","id":"e10ebf4d-8131-4b8f-95fb-2d7997c362cb","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"835d1d7e-01e4-4886-ad63-20008a1d56a0","keyword":"轮辐","originalKeyword":"轮辐"},{"id":"4c263549-42eb-433f-8adc-324261500db4","keyword":"强力旋压","originalKeyword":"强力旋压"},{"id":"9862cd87-e5a4-4e51-9ad0-dbdf9c6ea5df","keyword":"厚度","originalKeyword":"厚度"},{"id":"aa4b673a-d897-471b-987d-e0639c3266af","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"clkxygy201203020","title":"变厚度轮辐强力旋压成形过程的分析","volume":"20","year":"2012"},{"abstractinfo":"针对2种碳纤维织物/环氧预浸料,采用热压罐工艺在不同条件下制备了变厚度层板,并通过层板内部形貌、层板厚度、纤维含量、吸胶量、织物渗透率的测试分析,研究了变厚度层板的密实过程和纤维分布的影响因素.结果表明:密实过程中树脂的二维流动导致2种织物变厚度层板厚板区的纤维含量高于薄板区;G0827单向织物的面内渗透率与厚度方向渗透率比值大于G0803缎纹织物,造成G0827织物变厚度层板的纤维分布不均匀性更大;无吸胶材料的条件下层板内纤维分布均匀,说明吸胶材料内树脂的面内流动对层板的纤维分布有很大影响.","authors":[{"authorName":"马晓东","id":"524e961c-396d-498e-a2f9-c11abb2aaae0","originalAuthorName":"马晓东"},{"authorName":"孙志杰","id":"4ea9fa97-95fe-4ec9-94c3-6884f105ec66","originalAuthorName":"孙志杰"},{"authorName":"顾轶卓","id":"35426fbe-8449-4d4a-823c-4e79c71c6cd5","originalAuthorName":"顾轶卓"},{"authorName":"辛朝波","id":"177334ff-511e-4d45-a072-a4bace418a32","originalAuthorName":"辛朝波"},{"authorName":"李敏","id":"06035ee0-895e-4d6a-b66a-6a83528322dc","originalAuthorName":"李敏"},{"authorName":"张佐光","id":"e62f292a-8992-44ba-8795-8f47b10f4617","originalAuthorName":"张佐光"}],"doi":"","fpage":"14","id":"ff261b6c-7024-4fe6-be06-8a9d2dbdd28f","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"6c772e26-6ab2-4b1a-949d-5ca826d11853","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"ef811add-367b-495a-acf9-355c4264146a","keyword":"热压罐工艺","originalKeyword":"热压罐工艺"},{"id":"f357584f-1d62-4498-8345-a0394076352b","keyword":"变厚度层板","originalKeyword":"变厚度层板"},{"id":"47072e37-de46-4278-9998-a7cd808014e0","keyword":"层板密实","originalKeyword":"层板密实"}],"language":"zh","publisherId":"fhclxb200905003","title":"变厚度复合材料热压罐工艺层板厚度控制的实验研究","volume":"26","year":"2009"},{"abstractinfo":"在文献[1]中,雷达罩变厚度蜂窝展开加工后被铺贴到模具上.本文针对蜂窝中的应力应变,运用几何学及力学的综合方法进行力学推导,得到蜂窝的应力应变数据,并确定雷达罩蜂窝展开加工的力学约束条件,从而对不同的雷达罩蜂窝材料加工的合理尺寸给出合理的判据.这种方法避免了传统的有限元方法中的复杂的有限元建模过程,也避免了有限元计算中的误差.在针对FEMAP程序二次开发后,本文的计算结果在FEMAP(参考文献[2])有限元软件中得到形象的显示,使二次开发的程序与有限元模型之间相互联通.","authors":[{"authorName":"李兴德","id":"5ca3d51a-b656-4a3a-ae30-35ae882ad713","originalAuthorName":"李兴德"},{"authorName":"周春苹","id":"888a8e0b-894c-404a-9730-9184124045e2","originalAuthorName":"周春苹"},{"authorName":"裘进浩","id":"b480ab4d-25c1-4cf8-a2e9-24401dc23c8a","originalAuthorName":"裘进浩"}],"doi":"","fpage":"70","id":"793733b7-4eec-4032-a135-c3b83b742a4e","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"bed38f0c-1b8f-4cac-b466-c1bb0e9c75d4","keyword":"变厚度","originalKeyword":"变厚度"},{"id":"7a4f0686-cc33-441a-9fde-1e60f7fbcf3c","keyword":"蜂窝材料","originalKeyword":"蜂窝材料"},{"id":"afd2f8ac-e9cc-4490-9cb8-df7c22223057","keyword":"夹层结构雷达罩","originalKeyword":"夹层结构雷达罩"},{"id":"dff776d8-9ca7-40df-97a6-7aea5b359ce6","keyword":"展开蜂窝加工","originalKeyword":"展开蜂窝加工"},{"id":"9d45052c-6aa9-44d3-9a0f-65b0eb7f5100","keyword":"力学约束条件","originalKeyword":"力学约束条件"}],"language":"zh","publisherId":"blgfhcl201406015","title":"雷达罩变厚度蜂窝展开加工的力学约束","volume":"","year":"2014"},{"abstractinfo":"本文以变厚度圆柱壳微分单元为分析模型,导出了拉压不同弹性模量复合材料变厚度圆柱壳弯曲问题的平衡微分方程及其关系式.该方程的COLSYS数值解与ANSYS有限元结果比较表明,本文理论公式正确,基本假定合理,可作为复合材料变厚度圆柱壳较为精确的弯曲理论.","authors":[{"authorName":"温家鹏","id":"a2f0a659-2ec4-4751-9f72-4751cc84cb4e","originalAuthorName":"温家鹏"},{"authorName":"唐寿高","id":"14282193-48e6-41c1-8d23-31b770c33514","originalAuthorName":"唐寿高"},{"authorName":"顾易璨","id":"ddf0995d-1624-46a8-8818-51775b256bab","originalAuthorName":"顾易璨"}],"doi":"10.3969/j.issn.1003-0999.2005.06.001","fpage":"3","id":"fba31281-0dd8-47c3-8fe5-8d252499e827","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"df6e6740-ca01-4e66-9d31-364fa146e48a","keyword":"复合材料变厚度圆柱壳","originalKeyword":"复合材料变厚度圆柱壳"},{"id":"65022e50-daa7-4b4a-9f09-ff89717cb231","keyword":"拉压不同弹性模量","originalKeyword":"拉压不同弹性模量"},{"id":"92c40897-ff21-44b8-85e7-91c02a1172d9","keyword":"基本方程","originalKeyword":"基本方程"},{"id":"0a2ac619-c83e-45d9-bb82-3a6648f0c5c2","keyword":"弯曲理论","originalKeyword":"弯曲理论"}],"language":"zh","publisherId":"blgfhcl200506001","title":"拉压不同弹性模量变厚度圆柱壳基本方程及其应用","volume":"","year":"2005"}],"totalpage":1270,"totalrecord":12693}