{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究射频磁控溅射法制备ZnO 薄膜,采用X射线衍射仪(XRD)和场发射扫描电子显微镜(SEM)研究溅射功率、溅射时间和退火温度对薄膜微结构特性的影响,并分析ZnO 薄膜阻变特性.实验结果表明,沉积态薄膜择优取向为?002?晶向,随溅射功率和退火温度增加,择优取向显著增强,溅射功率120 W时薄膜生长速率可达4.8 nm/min,薄膜厚度92 nm的ZnO 薄膜具有阻变特性且开关比可达104.","authors":[{"authorName":"艾春鹏","id":"82ec6154-324f-4d2c-b8cd-c9c927375b28","originalAuthorName":"艾春鹏"},{"authorName":"赵晓锋","id":"725addb3-3025-43f5-924a-a93cecdd1758","originalAuthorName":"赵晓锋"},{"authorName":"白忆楠","id":"1c15343d-2296-488a-801d-cfd88460f08a","originalAuthorName":"白忆楠"},{"authorName":"","id":"086dbf11-7a6f-4531-b1e4-e21336fad053","originalAuthorName":"冯清茂"},{"authorName":"温殿忠","id":"5480f238-c921-427a-929f-ed09ec7f2f8c","originalAuthorName":"温殿忠"}],"doi":"10.3969/j.issn.1001-9731.2016.增刊(Ⅱ).015","fpage":"81","id":"fe1e8459-e731-4d36-b325-e91d810108cb","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5ddebe21-005e-4581-8248-5d9c7979b626","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"6534f5ad-390d-4fbb-b920-04c1d0723d6a","keyword":"射频磁控溅射","originalKeyword":"射频磁控溅射"},{"id":"8c740aa2-badc-4860-a4bb-aa464db7c94f","keyword":"微结构","originalKeyword":"微结构"},{"id":"86bc6daf-df69-4594-a4b2-975e1f1d8799","keyword":"阻变特性","originalKeyword":"阻变特性"}],"language":"zh","publisherId":"gncl2016z2015","title":"基于射频磁控溅射法制备ZnO薄膜研究?","volume":"47","year":"2016"},{"abstractinfo":"将胶通过中空纤维柱浓缩后,分别用碱性蛋白酶和木瓜蛋白酶进行脱蛋白处理,以得到非橡胶组分少的高级胶橡胶,并研究其各项性能.结果表明,浓缩胶经过碱性蛋白酶和木瓜蛋白酶处理后胶橡胶的氮含量和挥发物含量显著降低;胶橡胶的硫化速率变慢,改善了胶橡胶易焦烧的性能;胶橡胶的力学性能提高,热稳定性降低.","authors":[{"authorName":"张哲","id":"11b85593-f770-4950-953a-a786a583da32","originalAuthorName":"张哲"},{"authorName":"廖双泉","id":"78fd3767-4f91-4b69-814c-67eaf75bc67d","originalAuthorName":"廖双泉"},{"authorName":"郭明万","id":"06e0ad4b-70fb-4671-afda-de27c69d1016","originalAuthorName":"郭明万"},{"authorName":"廖小雪","id":"1d1d6b83-9d96-4b03-8e41-e6559c72899a","originalAuthorName":"廖小雪"},{"authorName":"王丽芝","id":"bea6c016-757b-41b3-8f19-0bb5d24efaf7","originalAuthorName":"王丽芝"}],"doi":"","fpage":"758","id":"de6ad4c0-0c9d-42b8-9856-397498c136ac","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"cadba9a9-098d-4496-a685-6e4473d19eaa","keyword":"胶橡胶","originalKeyword":"胶清橡胶"},{"id":"81008d2a-a30b-4265-ae86-42b879646392","keyword":"脱蛋白","originalKeyword":"脱蛋白"},{"id":"7d4ea146-353d-49ca-80ac-22100199765d","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"clkxygc201305028","title":"高级胶橡胶的性能","volume":"31","year":"2013"},{"abstractinfo":"针对\"膜法回收大豆乳中的生物活性物质\"工艺中的预处理部分进行研究.发现絮凝离心处理分别可以去除乳中65%左右的脂肪和90%左右的悬浮固体.袋式过滤和精密微孔管等精密过滤手段对乳的预处理效果不佳,但是袋式过滤可以作为微滤之前的保安过滤方式.为了进一步去除乳中的杂质和同时灭菌,微滤过程是必须的.包括絮凝离心和微滤在内的预处理过程可以在蛋白质损失率只有10%左右的情况下将悬浮固体全部去除,脂肪去除率高达90%以上.中试的试验结果验证了上述结论.","authors":[{"authorName":"刘国庆","id":"abfd210b-84f6-422f-b8f4-a41304527f06","originalAuthorName":"刘国庆"},{"authorName":"罗敏","id":"364c188c-1bb2-433a-b6ce-944fadaa67b2","originalAuthorName":"罗敏"},{"authorName":"龙国萍","id":"8c47d804-1f27-4662-a033-873c5460d3bb","originalAuthorName":"龙国萍"},{"authorName":"朱翠萍","id":"516426fc-c12b-4026-80f3-655405b907c9","originalAuthorName":"朱翠萍"},{"authorName":"卿德林","id":"69cfde87-ce1d-4ba8-96e0-d8e6d39273ce","originalAuthorName":"卿德林"},{"authorName":"王占生","id":"eb6c3460-2adc-41ea-9358-e71d87ef8734","originalAuthorName":"王占生"}],"doi":"10.3969/j.issn.1007-8924.2003.05.010","fpage":"42","id":"021931e4-b861-439b-8000-1b7d8d55974f","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"7b4559c5-95f5-4b4f-8572-32af5cb2e40a","keyword":"大豆乳","originalKeyword":"大豆乳清"},{"id":"626d140e-45a6-40fe-8bb9-954561700588","keyword":"预处理","originalKeyword":"预处理"},{"id":"ffea2e5d-4c84-4175-a6ab-6df3f599bec5","keyword":"微滤","originalKeyword":"微滤"}],"language":"zh","publisherId":"mkxyjs200305010","title":"大豆乳的预处理","volume":"23","year":"2003"},{"abstractinfo":"对PMI泡沫夹层结构整流罩卡门锥段成型技术进行了研究,通过对玻璃钢面板及其泡沫夹层结构性能、面板成型、泡沫热成形、泡沫拼接、玻璃钢泡沫夹层结构成型及无损检测等技术研究,确定了玻璃钢外面板、预先固化,然后与泡沫等复合组装,最后铺覆内面板,整体进罐固化的成型工艺.结果表明,玻璃钢面板纵、横向拉伸强度为602、593MPa,模量为26.0、27.2 GPa,满足设计强度≥350MPa、模量≥25GPa的要求;玻璃钢/PMI泡沫夹层结构泡沫密度为(110±10)kg/m3,厚度28mm,纵、横向侧压强度为32.9、30.5MPa、模量为2.31、2.38GPa,满足设计指标侧压强度≥25MPa、模量≥2.0GPa的要求,采用玻璃钢/PMI 泡沫夹层结构分步固化成型工艺研制的首件新型号整流罩卡门锥段,满足设计使用要求.","authors":[{"authorName":"赵锐霞","id":"6d0b970d-2e9d-4c82-a1fa-3158a003ccda","originalAuthorName":"赵锐霞"},{"authorName":"尹亮","id":"922fc883-6865-4df3-8393-3eb39221466c","originalAuthorName":"尹亮"},{"authorName":"潘玲英","id":"c65837a1-503f-4cfd-8773-4d5d7a5ed0c9","originalAuthorName":"潘玲英"}],"doi":"10.3969/j.issn.1007-2330.2012.04.014","fpage":"58","id":"a73bd1ed-8b1a-4faf-aaa8-43f7882b4829","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b4460ffb-fdfa-41e7-bfa6-371091ce4719","keyword":"泡沫夹层结构","originalKeyword":"泡沫夹层结构"},{"id":"6144557c-b4d4-441d-b35e-df3eea9ac029","keyword":"卡门锥段","originalKeyword":"冯卡门锥段"},{"id":"12578f5e-24e0-4ce5-9465-6b28d57cf2dd","keyword":"成型技术","originalKeyword":"成型技术"}],"language":"zh","publisherId":"yhclgy201204014","title":"PMI 泡沫夹层结构整流罩卡门锥段成型技术研究","volume":"42","year":"2012"},{"abstractinfo":"介绍了国内外防蜡工艺的研究进展,总结了结蜡机理及结蜡影响因素,并对比分析了已被各油田广泛使用的四种防蜡技术(机械蜡、表面能防蜡、化学防蜡和微生物防蜡)的防蜡机理、特点、适用性及现场应用效果,以便能为各油田在生产实践中,有针对性地选择合适的防蜡技术提供理论依据,为防蜡技术的未来发展奠定一定的基础.提出改进现有技术和开发高效、稳定、多功能的防蜡剂是防蜡技术的未来发展方向.","authors":[{"authorName":"杨红静","id":"4f40f445-09d5-4690-8080-eba42d0cdddb","originalAuthorName":"杨红静"},{"authorName":"杨树章","id":"4145abd9-0e08-4254-b046-ac2f515cf573","originalAuthorName":"杨树章"},{"authorName":"马廷丽","id":"685f01f5-830b-4e62-b4d7-e5245eb1c988","originalAuthorName":"马廷丽"},{"authorName":"高立国","id":"d0b12990-4de6-4a4a-8a2d-3b634913064b","originalAuthorName":"高立国"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.03.020","fpage":"130","id":"d6a43263-d262-4331-9270-bff804f9676b","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"91124ecc-514b-4a74-abf5-9c35f2df02ee","keyword":"结蜡机理","originalKeyword":"结蜡机理"},{"id":"a98abdd4-ebf7-4e7c-a7bd-90f8e47613fe","keyword":"结蜡影响因素","originalKeyword":"结蜡影响因素"},{"id":"c4799ac5-e4ca-4420-8cf8-fe3bf063991f","keyword":"防蜡技术","originalKeyword":"清防蜡技术"},{"id":"3e774d80-4ebc-4fda-b94b-fdc6768b698e","keyword":"机械蜡","originalKeyword":"机械清蜡"},{"id":"5baa128d-ab6f-43c0-978e-8b37e1139625","keyword":"表面能防蜡","originalKeyword":"表面能防蜡"},{"id":"af15dcb4-cf52-431f-9028-419b66668a8e","keyword":"化学防蜡","originalKeyword":"化学清防蜡"},{"id":"f09a4336-d5c6-4382-bcb6-7005634906fd","keyword":"微生物防蜡","originalKeyword":"微生物清防蜡"}],"language":"zh","publisherId":"bmjs201703021","title":"防蜡技术的研究及应用","volume":"46","year":"2017"},{"abstractinfo":"建立了电泳-色谱扫描法检测尿中蛋白含量的方法.该方法利用醋酸纤维薄膜电泳分离尿蛋白后,用作者合成的染色剂染色,用CS-930薄层扫描仪定量测定尿中蛋白含量,其被测组分的质量浓度为0.3~3.6 g/L时与相应峰面积呈线性关系,相关系数为0.997 4.方法的精密度为4.20%,回收率为96.7%~104.3%.利用该方法对肾脏病人尿液中蛋白的含量进行分析,快捷简便,灵敏度高,检出限低,线性范围宽,结果令人满意.","authors":[{"authorName":"曹晓峰","id":"3711196e-d8da-46cf-87e5-bd9debe15321","originalAuthorName":"曹晓峰"},{"authorName":"刁海鹏","id":"6acfaac3-416b-4a1b-bab0-1e8776dd0d29","originalAuthorName":"刁海鹏"},{"authorName":"卫建琮","id":"9362a773-c824-45be-9fea-33806dde09ac","originalAuthorName":"卫建琮"},{"authorName":"张生万","id":"921d2b0c-1b01-40d6-8753-9696b8d1f51a","originalAuthorName":"张生万"},{"authorName":"彦琳","id":"053ba75b-ec52-4893-9e7c-c6ab0e07f9d0","originalAuthorName":"冯彦琳"}],"doi":"10.3321/j.issn:1000-8713.2003.03.022","fpage":"270","id":"51e8594f-872c-4a5b-b132-53d4bd34625f","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"f3d9e64a-cf55-423f-acb7-146459f1af61","keyword":"色谱扫描","originalKeyword":"色谱扫描"},{"id":"9be0d35a-011a-4a25-a3e0-67534c4d63ed","keyword":"电泳","originalKeyword":"电泳"},{"id":"7bd86f35-dbdc-4995-86d5-9f037795b031","keyword":"蛋白","originalKeyword":"清蛋白"},{"id":"fe1349eb-a513-4138-9060-7f6508b63df0","keyword":"尿","originalKeyword":"尿"}],"language":"zh","publisherId":"sp200303022","title":"电泳-色谱扫描法检测尿中蛋白","volume":"21","year":"2003"},{"abstractinfo":"通过中试研究,考察气冲强化动态超滤处理大豆乳液的效果和工艺参数.对于经过预处理的大豆乳液,采用该动态超滤可以极大地延缓膜通量的衰减速率,在气冲强度5.0m3/h、压力0.05 MPa、温度45℃和pH 7.0的最优操作条件下,膜的过滤周期达到1 200 min以上,远大于死端过滤或切向流过滤时膜的过滤周期.对污染后膜的清洗表明,该组件形式有利于膜的水力冲洗和化学清洗;对蛋白质和糖类的分离效果进行监测,结果表明气冲强化动态形式不改变超滤膜对目标物质的分离特性.","authors":[{"authorName":"吕斯濠","id":"9374da72-8071-487b-b890-92c70ad7f66a","originalAuthorName":"吕斯濠"},{"authorName":"陈福明","id":"e0f2141c-54c1-41ec-a37e-642f737d2750","originalAuthorName":"陈福明"},{"authorName":"王晓琳","id":"1b7d1ceb-9adf-4b8a-bb68-4f777f2c3f1f","originalAuthorName":"王晓琳"},{"authorName":"李旭宁","id":"73a1ae68-a34c-4974-ba0d-e5a0d055289e","originalAuthorName":"李旭宁"},{"authorName":"王晓玉","id":"c0dc190d-b2db-44bd-8254-cffeb4d9dc5c","originalAuthorName":"王晓玉"}],"doi":"10.3969/j.issn.1007-8924.2007.04.011","fpage":"50","id":"6ab2b58a-2a14-4126-adb6-5e2bf1920fc7","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"c1089308-8022-4ed0-8312-cad5e353e8af","keyword":"气冲强化动态超滤","originalKeyword":"气冲强化动态超滤"},{"id":"25c22f89-87d9-4e6c-836b-f01881d1564a","keyword":"大豆乳液","originalKeyword":"大豆乳清液"},{"id":"78ea22d8-8622-49bf-a9fc-0e5e99536bb4","keyword":"膜污染","originalKeyword":"膜污染"},{"id":"eabaa1ba-dfd8-44ff-a060-04823873fa16","keyword":"大豆蛋白质","originalKeyword":"大豆蛋白质"},{"id":"e268adb5-50b7-4a7e-af3a-e335207f874e","keyword":"气冲强度","originalKeyword":"气冲强度"},{"id":"f42bff52-e068-47ac-82a2-1f2e7a3546e3","keyword":"膜通量","originalKeyword":"膜通量"}],"language":"zh","publisherId":"mkxyjs200704011","title":"气冲强化动态超滤处理大豆乳液","volume":"27","year":"2007"},{"abstractinfo":"钛配合物/nano-NaH双组分催化剂具有极高的加氢催化活性. 将催化剂分离成上层液和下层nano-NaH固体来研究高活性催化物种. 取上层液作为催化剂加到另一装有甲苯、1-辛烯并充氢气的反应瓶中,观察不到发生加氢反应的迹象;取下层nano-NaH固体,相同条件下立即发生加氢反应,催化剂效率(TO)达到2 800. 进一步通过紫外光谱实验发现,上层液中检测到钛物种的特征吸收峰的吸光度很小, 仅为0.35,相同条件下,下层nano-NaH固体中检测到的钛物种吸光度很强为2.3,说明绝大部分的Cp2TiCl2被吸附在nano-NaH固体表面并形成了原位负载的催化活性物种. 表明nano-NaH既是还原剂又是Ti活性物种的载体. 由于负载使其不易失活,这就是其稳定性较好的一个主要因素.","authors":[{"authorName":"范荫恒","id":"f6184faf-cee9-4e87-8274-cbdf54feab7d","originalAuthorName":"范荫恒"},{"authorName":"武美霞","id":"894d2a42-8901-4300-bde0-2a0900f20355","originalAuthorName":"武美霞"},{"authorName":"侯瑞","id":"7d3463b6-fb5f-4d28-af41-8d28c1510468","originalAuthorName":"侯瑞"},{"authorName":"廖世健","id":"a8e66122-3513-4006-ad8d-8bfd5eccedfb","originalAuthorName":"廖世健"}],"doi":"10.3969/j.issn.1000-0518.2009.03.023","fpage":"349","id":"6df410db-ddf8-45a3-a5f5-f599abba15d7","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"3e307cad-8ddd-4107-961a-39e0bf4d6409","keyword":"纳米氢化钠","originalKeyword":"纳米氢化钠"},{"id":"02f2c265-675c-4cc1-be00-080e4e61aba2","keyword":"钛配合物","originalKeyword":"茂钛配合物"},{"id":"b844bbe5-3287-481d-8461-3279d4edcecb","keyword":"均相催化物种","originalKeyword":"均相催化物种"},{"id":"ba25179a-acf1-4b1d-a461-009aa805c138","keyword":"原位负载","originalKeyword":"原位负载"}],"language":"zh","publisherId":"yyhx200903023","title":"钛配合物/纳米氢化钠高活性加氢催化剂活性物种相态","volume":"26","year":"2009"},{"abstractinfo":"实验通过调节乳的pH值,利用TFC-SR2卷式纳滤膜对乳进行脱盐研究,对在不同pH值状态下的乳浓缩液干物进行灰分的测定.实验结果表明,当调整pH值为乳蛋白的等电点4.6时,浓缩液干物灰分含量最少,脱盐效果最好.在乳液pH值为4.6,操作压力为1.3 MPa时,进行了渗透循环操作,得到了更好的脱盐效果.","authors":[{"authorName":"宋齐","id":"b6b7d91b-8a00-4ab0-ac6a-974f4eb434cf","originalAuthorName":"宋齐"},{"authorName":"潘凯","id":"fdae6866-ef85-46d7-a179-12ef9b84ea7b","originalAuthorName":"潘凯"},{"authorName":"曹兵","id":"b3cb5567-c5e6-4987-9406-d8c5230fb70b","originalAuthorName":"曹兵"}],"doi":"10.3969/j.issn.1007-8924.2011.02.019","fpage":"100","id":"8a8cd363-0ba3-4dd6-b0ce-2a82a65c44d9","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"52fe5f9d-3abc-4d5f-b936-6f32ed21115e","keyword":"乳","originalKeyword":"乳清"},{"id":"c2db9e33-7c74-4f72-9a97-98d51dd795cd","keyword":"纳滤膜","originalKeyword":"纳滤膜"},{"id":"af5b25f5-d506-40c6-877d-323a714aafb8","keyword":"pH值","originalKeyword":"pH值"},{"id":"c6a80e48-4bf7-4e22-8e22-340c20179596","keyword":"脱盐","originalKeyword":"脱盐"}],"language":"zh","publisherId":"mkxyjs201102019","title":"纳滤膜在乳脱盐中的应用研究","volume":"31","year":"2011"},{"abstractinfo":"分别采用乳液共混法与机械共混法,研究不同防老剂与胶橡胶并用的力学性能、热性能、加工性能.结果表明:防老剂的加入能提高胶橡胶的力学性能,其中加有防老剂264、防老剂SP-P的胶橡胶老化性能提升较为显著;乳液法共混制得胶橡胶的力学性能和老化性能优于机械共混法;防老剂的加入使热性能有所提升,但乳液共混法的热性能略微好于机械共混法.RPA加工分析表明,防老剂的加入使胶橡胶加工性能下降,但机械共混法所制备的胶橡胶加工性能优于乳液共混法.","authors":[{"authorName":"李震","id":"5d514689-94dd-41df-a92a-6e0fa2545b98","originalAuthorName":"李震"},{"authorName":"廖双泉","id":"80422392-9246-42e5-a8b7-80c59676d99c","originalAuthorName":"廖双泉"},{"authorName":"丁辉","id":"9c9cf938-ea2f-449e-9d6a-7f367ccbf345","originalAuthorName":"丁辉"},{"authorName":"廖小雪","id":"03855020-287d-4dd6-8589-8e7e42fda4ed","originalAuthorName":"廖小雪"},{"authorName":"林升博","id":"24c2d1ef-9208-4f75-a728-638c21dcf152","originalAuthorName":"林升博"}],"doi":"10.11896/j.issn.1005-023X.2015.02.016","fpage":"72","id":"16d22b8e-44f9-4985-bb82-2d95d0213fde","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e4481d59-bd25-41ef-9748-1ec50d0beeff","keyword":"防老剂","originalKeyword":"防老剂"},{"id":"1f6ec463-798d-4aad-900a-d3f5fac01cd0","keyword":"胶橡胶","originalKeyword":"胶清橡胶"},{"id":"d2afc6cd-5e89-4dc7-aa7e-2ed9c68fa1a2","keyword":"老化性能","originalKeyword":"老化性能"}],"language":"zh","publisherId":"cldb201502016","title":"不同防老剂对胶橡胶性能影响的研究","volume":"29","year":"2015"}],"totalpage":38,"totalrecord":373}