{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以TiN纳米粉体和RuCl3为前驱体,采用浸渍热分解法合成了Ru0.1Ti0.9O2纳米粉体,并以其为载体利用固相反应制备了Pt/Ru0.1Ti0.9O2催化剂.通过X射线衍射和透射电镜观察到RuO2和TiO2之间形成了金红石相的固溶体,Pt被均匀地担载于Ru0.1Ti0.9O2表面.在0.5 mol/LH2SO4溶液中的极化曲线测试发现担载Pt与Ru0.1Ti0.9O2具有协同作用,因而具有优异的析氢、析氧电催化性能.质子交换膜燃料电池测试初步表明,Pt/Ru0.1Ti0.9O2具有高的氧阴极还原反应催化活性,进一步的反极实验证明其具有比Pt/C更高的稳定性.","authors":[{"authorName":"王爱萍","id":"eeb1ded8-111c-4b97-8bde-ab3d5590bd4d","originalAuthorName":"王爱萍"},{"authorName":"徐海波","id":"b6869d5d-9761-4aef-b6c0-1e9841ec0cdd","originalAuthorName":"徐海波"},{"authorName":"芦永红","id":"55ae9736-f925-43eb-a932-117040a20960","originalAuthorName":"芦永红"},{"authorName":"","id":"a9162741-2dea-44ab-9526-b782f91dfd89","originalAuthorName":"胡杰珍"},{"authorName":"孔祥峰","id":"f43cc6c5-a5cd-461c-8e17-a614df699333","originalAuthorName":"孔祥峰"},{"authorName":"田丙伦","id":"340ac043-f709-42f6-83ba-d26d0434bf1c","originalAuthorName":"田丙伦"},{"authorName":"董辉","id":"776b84eb-22d8-4697-979a-b64561fb7d5c","originalAuthorName":"董辉"}],"doi":"","fpage":"179","id":"3cee3b5b-1940-4015-91ae-6b3cf359d0b5","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"c44350ec-d7e9-4a45-831c-e61ef3cc205f","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"5407d939-6107-4e55-8f09-61f3b5b0f7ee","keyword":"氧化钉","originalKeyword":"氧化钉"},{"id":"f1c5ec18-2245-449d-98bc-3d9a519ba869","keyword":"氧化钛","originalKeyword":"氧化钛"},{"id":"c324e2a5-dc1a-4b91-9a6a-77a28cadca04","keyword":"浸渍热分解","originalKeyword":"浸渍热分解"},{"id":"dc06d523-35cd-4c3f-9495-3d1cf5976950","keyword":"燃料电池","originalKeyword":"燃料电池"},{"id":"d6c7e7d7-49cd-450c-b5a0-71ce4e04e0f8","keyword":"水电解","originalKeyword":"水电解"},{"id":"526a2659-01b1-4d7e-8ff0-3d7347340bb4","keyword":"催化剂载体","originalKeyword":"催化剂载体"},{"id":"1ec84184-9cf3-4ebd-a71c-ddeb09614c64","keyword":"导电氧化物","originalKeyword":"导电氧化物"}],"language":"zh","publisherId":"cuihuaxb200903001","title":"钌钛复合氧化物及其载铂催化剂的制备与表征","volume":"30","year":"2009"},{"abstractinfo":"通过极化曲线测试、浸泡实验和表面分析技术研究了不同交流电频率对X65钢在CO32-/HCO3溶液中腐蚀行为的影响.研究表明:在30~1000Hz范围内,除200Hz外,低交流电频率时(≤300Hz),随交流电频率的减小,其钝化区宽度明显变窄,点蚀击破电位负移,维钝电流密度增大,临界钝化电流密度增大;高交流电频率时(> 300 Hz),频率对X65钢的钝性影响很弱.X65钢的腐蚀速率随交流电频率的增加而减小,低交流电频率作用时,X65钢的腐蚀速率随交流电频率增加快速减小,高交流电频率时,其腐蚀速率随交流电频率的增加略减小.","authors":[{"authorName":"朱敏","id":"2e72b0b6-6bea-42ca-829e-fe5279a616c9","originalAuthorName":"朱敏"},{"authorName":"杜翠薇","id":"003c2ce4-31ec-408c-a884-c80d34ecd07e","originalAuthorName":"杜翠薇"},{"authorName":"李晓刚","id":"433c59c5-5ae9-40c2-9610-c00f02172919","originalAuthorName":"李晓刚"},{"authorName":"刘智勇","id":"034bdd9b-60ac-4586-836a-f4931a730ca2","originalAuthorName":"刘智勇"},{"authorName":"赵天亮","id":"5745e93b-8f04-4930-8ba6-81707d2fc4b1","originalAuthorName":"赵天亮"},{"authorName":"李建宽","id":"775bd346-ec81-4f91-96fb-f92c83911da4","originalAuthorName":"李建宽"},{"authorName":"","id":"612cc8bc-57f1-43dc-999c-aa80e34361b4","originalAuthorName":"胡杰珍"}],"doi":"10.11868/j.issn.1001-4381.2014.11.015","fpage":"85","id":"40fbb9b0-ca79-419f-a560-a6d4796bdce3","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"ce2bcb1d-382e-45e6-b0e9-29a5f53f4c1c","keyword":"X65钢","originalKeyword":"X65钢"},{"id":"2115f6b4-2339-4e08-a413-97c02eb51867","keyword":"交流电频率","originalKeyword":"交流电频率"},{"id":"c69957c4-243b-4cd3-9251-bc5e93a97911","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"4142f541-4d7b-4b1c-9366-f31f029165ce","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"clgc201411015","title":"交流电频率对X65钢在CO32-/HCO3-溶液中腐蚀行为的影响","volume":"","year":"2014"},{"abstractinfo":"利用阵列电极技术与腐蚀埋片相结合的方法,以Q235钢为研究材料,经自然热带临海红壤埋片,研究了Q235钢的宏观非均匀腐蚀行为.结果表明:Q235钢材料在时间维度上和垂直地面的空间维度上皆发生非均匀腐蚀.时间维度上发生非均匀腐蚀的原因是降雨频率与降雨量对土壤湿度的影响,从而影响Q235钢的腐蚀环境;垂直地面的空间维度上发生非均匀腐蚀的原因是随土壤深度增加,土壤湿度变化、含氧量变化及土壤组成成分差异的影响.在0~90 cm深度土壤范围内,随土壤深度的增加,Q235钢的腐蚀速率增加.垂向埋于热带滨海红壤中的长尺寸Q235钢在30~50、80和140~150 cm 3个范围内,因电偶腐蚀影响,腐蚀速率较大.","authors":[{"authorName":"","id":"d07356de-60d3-45d4-9f49-233de39e5805","originalAuthorName":"胡杰珍"},{"authorName":"邓培昌","id":"0e704fc3-148e-4f06-95d1-a50aa06d06aa","originalAuthorName":"邓培昌"},{"authorName":"张际标","id":"7de2a93c-c2d2-47fb-a595-aede7737dcee","originalAuthorName":"张际标"},{"authorName":"高虓","id":"bfcf0a69-7487-4564-9b99-edbb077a9723","originalAuthorName":"高虓"},{"authorName":"欢欢","id":"c997dfa7-dea7-428c-b511-117630ed6d1b","originalAuthorName":"胡欢欢"},{"authorName":"刘泉兵","id":"01ae49fc-92a6-423c-a7f4-a699c3468b3e","originalAuthorName":"刘泉兵"},{"authorName":"王贵","id":"86799888-e17b-4678-a15f-458fbc556ac6","originalAuthorName":"王贵"}],"doi":"10.11903/1002.6495.2016.159","fpage":"233","id":"7dd65ef5-b6d9-4dae-bef0-dcec5371c5b9","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"ea1c252d-0cb7-43b6-9007-01f6fa9128be","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"3ccbefe2-f296-492f-8a37-27810dae484a","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"24d32173-ff64-4d17-8b57-395666c58de7","keyword":"红壤","originalKeyword":"红壤"},{"id":"7db9072d-f52f-44e8-b184-641062e8e548","keyword":"非均匀","originalKeyword":"非均匀"},{"id":"0f6ce86f-a620-4f0c-be24-cf182736216e","keyword":"湿度","originalKeyword":"湿度"}],"language":"zh","publisherId":"fskxyfhjs201703004","title":"热带滨海红壤中Q235钢的宏观非均匀腐蚀研究","volume":"29","year":"2017"},{"abstractinfo":"以纳米TiN粉体和氯铱酸的混合液为涂液,采用浸渍-热分解法制备了含IrOx-TiO2中间层的钛基氧化铱电极.利用扫描电镜、X射线能谱和X射线衍射技术并结合电化学方法考察了中间层的组成和焙烧温度对电极的电催化性能和使用寿命的影响.结果表明, IrOx-TiO2中间层的加入没有改变传统的钛基氧化铱电极的形貌特征和组成,并使电极具有相同的电催化响应特性,同时大大提高了钛基氧化铱电极的使用寿命.制备钛基氧化铱电极的最优条件为焙烧温度450 ℃, 中间层中Ir/Ti摩尔比为1 5.","authors":[{"authorName":"","id":"9d627a68-03cd-4545-81c1-a1e17643de41","originalAuthorName":"胡杰珍"},{"authorName":"徐海波","id":"7dc215d7-82e9-4e93-937f-15ac237451ba","originalAuthorName":"徐海波"},{"authorName":"芦永红","id":"50f67019-10fb-40a3-bbf1-acf933bfd92d","originalAuthorName":"芦永红"},{"authorName":"皇甫淑君","id":"305afee9-0285-4d8b-8b52-5695029cdc71","originalAuthorName":"皇甫淑君"},{"authorName":"王佳","id":"d9766dba-aee1-4690-873c-da2333b17b9d","originalAuthorName":"王佳"},{"authorName":"代琳","id":"b7c30d19-3ea6-472e-96f4-49e166dfe7dd","originalAuthorName":"代琳"}],"doi":"","fpage":"1253","id":"303091e2-212e-4460-a7c0-c29dfbda0d1c","issue":"12","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"3fba9c50-5c23-406a-a434-a0f0d437bcd6","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"21084830-a26a-4718-817d-68c652fc72aa","keyword":"氯铱酸","originalKeyword":"氯铱酸"},{"id":"81e5e35b-5335-4273-a576-a9643155bd57","keyword":"氧化钛","originalKeyword":"氧化钛"},{"id":"262c936f-c9db-4255-8be8-8f3f136671e9","keyword":"氧化铱","originalKeyword":"氧化铱"},{"id":"21ff565e-ce74-4df2-8a02-59d54b74a4dd","keyword":"中间层","originalKeyword":"中间层"},{"id":"7ff17485-4a86-47fc-81c8-bdc092f6cd3c","keyword":"电催化","originalKeyword":"电催化"}],"language":"zh","publisherId":"cuihuaxb200812013","title":"纳米TiN粉体氧化制备铱钛氧化物为中间层的钛基氧化铱电极","volume":"29","year":"2008"},{"abstractinfo":"廉价、环境友好、高稳定性并具有可见光光催化活性的光催化剂将是光催化发展进一步走向实用化的关键.卤素掺杂TiO2是具有可见光光催化活性的光催化剂,经卤素掺杂可以使TiO2的禁带宽度减小,从而使TiO2的吸收边红移.对TiO2的氟、氯、溴、碘掺杂的国内外研究现状进行了系统评述,分析了提高TiO2可见光活性的原因,指出经卤族元素掺杂,TiO2在保持紫外区光催化活性的前提下,大大增加了其可见光响应能力,且有益于具有光催化活性晶相TiO2的形成.","authors":[{"authorName":"","id":"f30b26c6-51da-43d2-b784-465f7c8cf092","originalAuthorName":"胡杰珍"},{"authorName":"邓培昌","id":"5d920066-a463-447d-88b0-39d55aa55133","originalAuthorName":"邓培昌"}],"doi":"10.3969/j.issn.1009-9964.2010.03.002","fpage":"8","id":"6ea484bf-9904-4967-ac8a-412f9be97ef0","issue":"3","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"d33dd70c-8947-4963-b4f6-e8baac17d755","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"3c9d8039-e078-4d2f-8bcc-57878b61e31e","keyword":"卤族元素","originalKeyword":"卤族元素"},{"id":"d3dd2985-d4a5-4e6d-8349-d0aeb4b49f79","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"cf201948-bd87-4955-8550-36758bb90a29","keyword":"改性","originalKeyword":"改性"},{"id":"659240f1-e192-409b-8b9c-59931955ebe1","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"tgyjz201003002","title":"卤族元素掺杂改性TiO2光催化剂研究进展","volume":"27","year":"2010"},{"abstractinfo":"金属在海水-大气界面的水线腐蚀严重,腐蚀机理复杂,具有重要的科学研究价值.通过阵列电极(WBE)测试技术捕获部分浸泡于海水中的碳钢阵列电极的阴阳极分布规律;通过线性极化技术(LP)测试获得垂直于海水-大气界面的碳钢阵列电极列的腐蚀电流与腐蚀电位;通过电化学阻抗谱(EIS)与腐蚀形貌观察法相结合的方法探讨了垂直于海水-大气界面的碳钢阵列电极列的腐蚀机理差异.结果表明:垂直于海水-大气界面的碳钢分别在水线区域和近海水-大气界面的海水区域存在两个腐蚀峰,腐蚀峰的腐蚀电流是其他区域的3~10倍;大气中的腐蚀电位高于海水中,处于海水中的碳钢腐蚀电位随浸泡时间逐渐升高而处于大气中的腐蚀电位逐渐下降;海水中碳钢的腐蚀产物疏松、附着力差,在大气中则腐蚀产物致密、附着力强;海水-大气界面区碳钢的腐蚀是由电位差、溶解氧浓度、腐蚀产物等多因素控制的.","authors":[{"authorName":"","id":"f3cf41d6-294e-47b6-b4b1-bf8ed662bdb3","originalAuthorName":"胡杰珍"},{"authorName":"程学群","id":"c9415932-b975-4d3f-9d40-ebc84d196cc5","originalAuthorName":"程学群"},{"authorName":"李晓刚","id":"518d78e9-5f1d-4b14-a35e-7943f34f945e","originalAuthorName":"李晓刚"},{"authorName":"邓培昌","id":"b9ffdf2d-3b04-4df5-bcbf-6ccb3e03eeac","originalAuthorName":"邓培昌"},{"authorName":"王贵","id":"67f12ae8-b2a5-4b65-bdd6-8accf2832723","originalAuthorName":"王贵"}],"doi":"10.11973/fsyfh-201511002","fpage":"1014","id":"d23823aa-1d66-4c8c-80e3-245f17ad0c01","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"df2ccc32-33f4-4b1e-a251-28dbddb3c445","keyword":"海水-大气界面","originalKeyword":"海水-大气界面"},{"id":"a136f06a-f931-4c53-ae31-1400b1e12dec","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"12baddea-522c-4d88-9a4e-82353efbe291","keyword":"阵列电极(WBE)","originalKeyword":"阵列电极(WBE)"},{"id":"2d82a1d2-f8ce-49e9-bb30-1beac4388546","keyword":"溶解氧浓度","originalKeyword":"溶解氧浓度"}],"language":"zh","publisherId":"fsyfh201511002","title":"阵列电极(WBE)联合线性极化技术(LP)研究海水-大气界面区碳钢的腐蚀行为","volume":"36","year":"2015"},{"abstractinfo":"鉴于固体聚合物电解质(SPE)水电解技术的发展现状,着重介绍了目前在SPE水电解析氢、析氧催化剂方面的研究进展,对催化剂的制备方法进行了分析,并对近来以纳米氮化钛粉体为前驱体通过浸渍-热分解法制备水电解催化剂的研究工作进行了总结,提出了开发高耐蚀性的催化剂载体和降低贵金属载量是SPE水电解催化剂的重要发展方向.","authors":[{"authorName":"侯志强","id":"62c4594f-91dc-4aeb-8d02-1a7478c492b8","originalAuthorName":"侯志强"},{"authorName":"孙仁兴","id":"82e22520-573d-4be9-94d2-7ca108acc66b","originalAuthorName":"孙仁兴"},{"authorName":"邹妍","id":"4ce2bc1d-f0db-468f-a324-0dcad2bbb196","originalAuthorName":"邹妍"},{"authorName":"","id":"5e5f1513-f5d0-4fe7-97f9-8f9479939493","originalAuthorName":"胡杰珍"},{"authorName":"徐海波","id":"01c3abe2-a641-40a3-ab93-393599d7709e","originalAuthorName":"徐海波"}],"doi":"10.3969/j.issn.1003-1545.2008.03.018","fpage":"74","id":"eb0f6b24-95e7-41f3-9fa7-d95a7a6682c6","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"466493d6-4c87-4e28-9e9f-e0317a0b4518","keyword":"水电解","originalKeyword":"水电解"},{"id":"6a2cbc69-95ec-4ba6-809e-ce01f49b1f29","keyword":"析氢","originalKeyword":"析氢"},{"id":"1d7ed4e8-c3d3-4ddc-b6ab-6a3395e2bf45","keyword":"析氧","originalKeyword":"析氧"},{"id":"ab97c409-0d65-4d96-ab40-ac170055647f","keyword":"电催化剂","originalKeyword":"电催化剂"},{"id":"92075a9f-55ff-4d78-b02c-418f216ca36c","keyword":"固体聚合物电解质","originalKeyword":"固体聚合物电解质"}],"language":"zh","publisherId":"clkfyyy200803018","title":"固体聚合物电解质水电解催化剂的研究进展","volume":"23","year":"2008"},{"abstractinfo":"以纳米TiN粉体和氯铱酸的混合液为涂液,采用浸渍一热分解法制备了含IrOx-TiO2中间层的钛基氧化铱电极.研究了IrOx-TiO2中间层对钛基氧化铱电极的显微结构及析氧寿命的影响.结果表明,TiN作为前驱体氧化生成金红石相的二氧化钛与氧化铱形成固溶体,并与钛基体形成了共格界面,从而构成了铱钛复合氧化物中间层,中间层的加入没有改变传统钛基氧化铱电极的基本形貌特征和组成,因而具有相同的电催化响应特性;由于中间层中二氧化钛的固溶和与钛基体的共格结合起到机械和化学的双重作用,电极的析氧寿命明显延长,从而通过实验手段证明了氧化铱电极失效的主要机制是由于钛基界面的劣化引起的.","authors":[{"authorName":"","id":"f2b11412-78e7-47e5-9762-1119ec16d6f5","originalAuthorName":"胡杰珍"},{"authorName":"邓培昌","id":"55cc2964-c4aa-4b70-8352-fc1be4d7fc12","originalAuthorName":"邓培昌"},{"authorName":"徐海波","id":"b5d0794d-6a44-4e00-97a5-0a3ea75c91ed","originalAuthorName":"徐海波"},{"authorName":"王佳","id":"10fad7d2-fdbe-4519-88ab-82b7c040306e","originalAuthorName":"王佳"}],"doi":"","fpage":"66","id":"ff6bb084-3340-4416-b94c-2633c586e425","issue":"4","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"9c63c3ed-12a5-4421-ac71-1fcafc99bd99","keyword":"氧化铱","originalKeyword":"氧化铱"},{"id":"f1aa0639-2fdb-4e1f-93fe-c5d7b243c8f4","keyword":"氧化钛","originalKeyword":"氧化钛"},{"id":"8980b4a6-1943-45c2-a91d-8dd772684eb5","keyword":"中间层","originalKeyword":"中间层"},{"id":"771c6a7a-acd4-4773-a50e-50cb9d8524d8","keyword":"电催化","originalKeyword":"电催化"},{"id":"6122a64b-c7db-4482-a138-77afc67463cd","keyword":"析氧","originalKeyword":"析氧"},{"id":"e8776774-ff8e-4b77-8a3a-c655e886090b","keyword":"寿命","originalKeyword":"寿命"}],"language":"zh","publisherId":"ddyts201004020","title":"铱钛氧化物中间层对钛基氧化铱电极组织及析氧行为的影响","volume":"29","year":"2010"},{"abstractinfo":"利用阵列电极技术捕获了在不同浸泡时间下每个微电极与其它99个微电极整体的电偶电流,分析获得了海水/海泥界面附近阴、阳极分布区域的变化规律;利用线性极化和电化学阻抗技术对垂直海水/海泥界面的一行微电极进行测试,获得了距海水/海泥界面不同距离的微电极的腐蚀电流、腐蚀电位,并观察了腐蚀形貌,探讨了其腐蚀机理.结果表明:平行于海水/海泥界面的海泥区域为电偶腐蚀阳极区、对应的海水区域为电偶腐蚀阴极区域;海水/海泥界面区金属的腐蚀是由电位差、溶解氧浓度、海泥阻抗等多因素控制;腐蚀主要区域是近海水/海泥界面的海泥区域及远海水/海泥界面的海水区域.海水中较高浓度的氧促进了腐蚀产物的致密化,而海泥中缺氧环境及微生物抑制了腐蚀产物的致密化.","authors":[{"authorName":"","id":"ce4c231d-0cc0-4f5d-9de5-26098cc2d663","originalAuthorName":"胡杰珍"},{"authorName":"李晓刚","id":"b1e374a8-f17a-4496-a738-d5646ab61508","originalAuthorName":"李晓刚"},{"authorName":"邓培昌","id":"cbd2ede4-3cfd-4616-8940-41f070266522","originalAuthorName":"邓培昌"},{"authorName":"张际标","id":"1b42094c-026a-45aa-9e54-1e3eaa2bf64a","originalAuthorName":"张际标"},{"authorName":"王贵","id":"267b964f-6f4a-4b11-bc46-7a9311c89188","originalAuthorName":"王贵"},{"authorName":"苏林海","id":"730e6321-db69-4a68-8e7f-839cfb17db1c","originalAuthorName":"苏林海"}],"doi":"10.11903/1002.6495.2015.195","fpage":"551","id":"68a33136-1f48-465a-bcb6-e4d5f1decfd7","issue":"6","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"886b31e3-d12f-487b-a6c1-c038b50861f0","keyword":"海水/海泥界面","originalKeyword":"海水/海泥界面"},{"id":"847d2218-a25b-4093-b9b7-ebeb4d15d74f","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"403d9361-917b-48a5-8c0f-af00d07c13fc","keyword":"阵列电极","originalKeyword":"阵列电极"},{"id":"1f2e8a8f-a460-498a-9c10-5d11579dc8f5","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"}],"language":"zh","publisherId":"fskxyfhjs201506004","title":"WBE联合LP技术研究海水/海泥界面碳钢的腐蚀行为","volume":"27","year":"2015"},{"abstractinfo":"传统磷化处理工艺中,重金属盐的使用对环境造成了严重污染.文中从磷化液配方和磷化后封闭液配方两方面人手,摒弃有毒重金属的使用,开发了一种磷化膜晶粒细小、附着力强、耐冲击性强的金属表面绿色磷化处理技术.以X70管线钢为基材,进行磷化处理,并通过磷化膜形貌分析、CuSO4点滴实验、综合性能对比、线性极化分析和电化学阻抗分析等方法研究了磷化处理效果.经过绿色磷化处理,X70管线钢的腐蚀电流从55.105 μA/cm2下降到35.719 μA/cm2,再经硅酸盐封闭处理后,腐蚀电流下降到0.043 μA/cm2;磷化未封闭的X70管线钢表面的磷化膜是存在大量孔隙的非致密膜,通过硅酸盐封闭后,磷化膜的致密程度大幅提高,电导率大幅降低,对金属基体有较好的腐蚀保护作用.","authors":[{"authorName":"","id":"6f16dcb9-b8f9-43c4-8b76-768f1b3bccb2","originalAuthorName":"胡杰珍"},{"authorName":"王贵","id":"c2867912-0349-4f00-ae7f-3e23359b8e25","originalAuthorName":"王贵"},{"authorName":"连亚丽","id":"ad2f0144-0740-4b83-8779-6c914cea00f2","originalAuthorName":"连亚丽"},{"authorName":"邓培昌","id":"5a4a9579-1df3-47fa-8540-3e13a89caa81","originalAuthorName":"邓培昌"},{"authorName":"刘泉兵","id":"3f9174cf-4ecf-45a6-9002-b83d3b2e444d","originalAuthorName":"刘泉兵"},{"authorName":"欢欢","id":"aeadd0b6-6da9-40d2-81ff-c7d478476b76","originalAuthorName":"胡欢欢"}],"doi":"","fpage":"72","id":"90828c06-ced4-46bc-9172-68e99a42f22f","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"4cacb688-0630-434f-b8c1-9ea5252c2b1a","keyword":"磷化","originalKeyword":"磷化"},{"id":"6550d781-9678-42a7-9df4-1a14e85f3350","keyword":"重金属","originalKeyword":"重金属"},{"id":"65ba2f33-35d4-4e4c-a5ca-ff9e3797fcd0","keyword":"绿色环保","originalKeyword":"绿色环保"},{"id":"11ba916c-a227-4db6-96cb-9a22e2a8dd8b","keyword":"硅酸盐","originalKeyword":"硅酸盐"},{"id":"7279bd5d-af98-4b44-b6e9-49ad820d6d0f","keyword":"封闭","originalKeyword":"封闭"}],"language":"zh","publisherId":"tlgy201704012","title":"绿色磷化处理方法研究","volume":"47","year":"2017"}],"totalpage":5,"totalrecord":45}