{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了石墨含量对炭系电热涂料电热性能的影响,并对以石墨为主要导电填料,配入一定质量的炭黑和碳化硅原料制备的炭系电热涂料电热性能进行了分析讨论.电热性能测试和SEM分析表明:石墨是炭系电热涂料优良的导电填料,当石墨含量为50%(粘结剂为50%)时,在220 V的电压下通电10 min,其涂层的发热功率为18.6 W,发热温度为43℃;配入炭黑和碳化硅原料时,在同等测试条件下,配比为m(粘结剂)∶m(石墨)∶m(炭黑)=5∶3∶2的涂层电热性能最好,发热温度稳定在53℃,可用于民用采暖;配比为m(粘结剂)∶m(石墨)∶m(碳化硅)=5∶4∶1的涂层发热温度可稳定在37℃.实验表明:炭黑比碳化硅对炭系电热涂料的电热性能影响大,能较好地提高炭系电热涂料的电热性能.","authors":[{"authorName":"艾晓龙","id":"f80658e7-189b-45c7-b679-603ade5b8ed1","originalAuthorName":"艾晓龙"},{"authorName":"夏金童","id":"1ab7d478-5909-41d6-b343-2c16f681f411","originalAuthorName":"夏金童"},{"authorName":"赵敬利","id":"138a52b9-3a1d-45c0-9f48-cf1f69aea839","originalAuthorName":"赵敬利"},{"authorName":"赵庆才","id":"ed4f79dd-81af-48b1-b1eb-d0faa4d25afb","originalAuthorName":"赵庆才"},{"authorName":"李允柱","id":"d34257be-ce99-47e8-b562-f5965e532070","originalAuthorName":"李允柱"},{"authorName":"刘奉来","id":"5b21179b-bec9-43aa-a363-b01baca0b093","originalAuthorName":"刘奉来"},{"authorName":"何成林","id":"fa42d489-d2be-4fe1-9517-d75f3ed589b7","originalAuthorName":"何成林"}],"doi":"10.3969/j.issn.0253-4312.2012.06.009","fpage":"37","id":"fc5cd6e8-4b1f-48b3-a218-f8ca7d80d7fe","issue":"6","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"389f8934-552b-401d-88ae-cff632cdf3dd","keyword":"电热涂料","originalKeyword":"电热涂料"},{"id":"c93e290a-f079-408e-9a51-327e8e6a6ea7","keyword":"电热性能","originalKeyword":"电热性能"},{"id":"fb7308cf-92ca-48e1-b5c9-e814cef03328","keyword":"石墨","originalKeyword":"石墨"},{"id":"d52bfbc8-24f0-423e-9601-bdc4f1365275","keyword":"炭系填料","originalKeyword":"炭系填料"}],"language":"zh","publisherId":"tlgy201206009","title":"导电填料对炭系电热涂料电热性能的影响","volume":"42","year":"2012"},{"abstractinfo":"通过在陶瓷基体原料(高岭土)中添加炭系导电原料(石墨、炭黑),经球磨混合、模压成形和烧结工艺制得炭/陶复合材料.采用X射线衍射(XRD)、扫描电镜(SEM)、数字测温仪等分析和测试了所研制试样的相组成、显微结构以及电热性能.结果表明,本实验的烧结条件下,炭系导电原料不会和陶瓷基体发生反应,其导电性不会受到影响.单一石墨和炭黑含量超过30和25wt%或石墨加炭黑混合(m石墨: m炭黑=1: 1)导电原料含量超过30wt%时,可在炭/陶复合材料内部形成良好的连续导电通道,且该材料具有优良的电发热性能.","authors":[{"authorName":"李焰","id":"c9736fc8-2e84-4b2a-90e7-d32362fd0e30","originalAuthorName":"李焰"},{"authorName":"夏金童","id":"9ab1d8d2-a8fd-456b-ab55-0cac8d048571","originalAuthorName":"夏金童"},{"authorName":"邵浩明","id":"e4f0dc3e-6d57-48a9-9cf4-511c43ed37c5","originalAuthorName":"邵浩明"},{"authorName":"卢学峰","id":"a39cb52d-2b23-4573-86a7-480708a8112f","originalAuthorName":"卢学峰"}],"doi":"10.3969/j.issn.1005-5053.2006.02.014","fpage":"57","id":"c2984658-4b1b-4cf7-a063-5c9b29c9ba6c","issue":"2","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"0e70cff4-4108-435f-bd6c-d7f37cb99d4d","keyword":"炭/陶复合材料","originalKeyword":"炭/陶复合材料"},{"id":"e5d12ff3-ca98-44c4-89ba-a5d77c2b3bfb","keyword":"石墨","originalKeyword":"石墨"},{"id":"6e0dd4ea-770f-45f4-b4bd-5c04fc871134","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"37796487-c2a3-4f1f-9a96-ec3b2feb9210","keyword":"电热性能","originalKeyword":"电热性能"}],"language":"zh","publisherId":"hkclxb200602014","title":"炭/陶复合材料电热性能的研究","volume":"26","year":"2006"},{"abstractinfo":"分别在环氧、环氧改性有机硅、乙烯基树脂3种体系中,以石墨烯为导电填料,研究不同含量的石墨烯对涂料电热性能的影响.结果表明:石墨烯填充在乙烯基树脂中时,发热效率最高,石墨烯复合环氧树脂的涂层附着力最好;石墨烯与环氧改性有机硅复合综合性能最佳.当温度为25℃时,石墨烯含量为3%的环氧改性有机硅涂层在20 V低电压下通电2 min,涂层维持温度为61℃,涂层功率为12.5 W/dm2,而且涂层物理性能最佳.石墨烯复合环氧改性有机硅树脂的电热涂料能满足安全、便捷、高效的要求.","authors":[{"authorName":"黄坤","id":"c7c40827-6397-42e4-950c-d973e92d4104","originalAuthorName":"黄坤"},{"authorName":"曾宪光","id":"67d3c376-8710-4b21-b6e9-c6ef8d5bbeaf","originalAuthorName":"曾宪光"},{"authorName":"裴嵩峰","id":"2d2a27e9-1fe6-4dc7-ba30-35dde4feffbd","originalAuthorName":"裴嵩峰"},{"authorName":"张敬雨","id":"97c49439-412f-45e2-ae72-c6b59e858dcb","originalAuthorName":"张敬雨"},{"authorName":"任文才","id":"e944f743-e7bb-4a13-8b8b-41d75a783167","originalAuthorName":"任文才"}],"doi":"","fpage":"13","id":"28e4bf0c-a458-42c3-b3c8-ed63c3608bd7","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"8ada6a8b-e889-4ace-99e3-669d7b5dce8c","keyword":"电热涂料","originalKeyword":"电热涂料"},{"id":"3b7bf37a-8e5f-40d0-8c78-6f54cd1a7648","keyword":"电热性能","originalKeyword":"电热性能"},{"id":"3480db1e-0fd7-4aec-a568-e4495af322b9","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"8fd9cc80-806d-4c45-a099-84ae549608da","keyword":"复合涂料","originalKeyword":"复合涂料"}],"language":"zh","publisherId":"tlgy201604003","title":"低压高效石墨烯复合涂料的电热性能研究","volume":"46","year":"2016"},{"abstractinfo":"研究不同功能材料替代量对水泥砂浆力学性能和电阻率的影响,根据力学和导电性能分析炭黑的最优替代量,分析了基准砂浆和最优替代量砂浆的电热效果.用不同量的炭黑替代水泥砂浆中的碳纤维,研究表明:随炭黑替代比例增加,砂浆电阻率增大,基于力学和导电性能确定炭黑的最优替代量为25%~50%;60 V电压下,含碳纤维1%的水泥砂浆、25%及50%炭黑替代碳纤维的砂浆在90 min的平衡温度分别为63℃、61℃和44℃;通过砂浆的电热实验最终确定炭黑替代碳纤维在砂浆中的最优替代量为25%.","authors":[{"authorName":"彭海龙","id":"639933dc-d1ff-446e-abab-79fb00c69e7f","originalAuthorName":"彭海龙"},{"authorName":"高培伟","id":"dc5927bb-a9e3-4594-ad70-a4f3b7043be5","originalAuthorName":"高培伟"},{"authorName":"王华侨","id":"82bcc63f-819c-4fa1-8279-5d17d5682ad8","originalAuthorName":"王华侨"},{"authorName":"耿飞","id":"cd3dee8b-87f9-4c48-a504-b120b31d73bd","originalAuthorName":"耿飞"},{"authorName":"高翔","id":"d7a0d4ce-a878-4976-a173-8137a5450742","originalAuthorName":"高翔"},{"authorName":"习雨同","id":"c275c272-f86c-4030-9194-b687351ccba0","originalAuthorName":"习雨同"}],"doi":"","fpage":"208","id":"b2f6237c-80ed-4e20-ad35-ca7b7db4ba45","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"5ff34e0a-60e2-4110-a419-d102460f53f3","keyword":"功能材料","originalKeyword":"功能材料"},{"id":"452c8ff5-b49c-42aa-8019-b3a2e06535f8","keyword":"水泥砂浆","originalKeyword":"水泥砂浆"},{"id":"88ac4b5d-4b0d-4498-a299-411076e04953","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"1df4ae5b-ed2a-4f3f-823c-3b57a149ee65","keyword":"电热性能","originalKeyword":"电热性能"}],"language":"zh","publisherId":"gsytb201401040","title":"掺不同功能材料水泥砂浆力学与电热性能的研究","volume":"33","year":"2014"},{"abstractinfo":"以水性丙烯酸树脂为粘结剂,石墨为主要导电填料,配入其他导电填料制备了水性炭系电热涂料.研究了水性丙烯酸树脂添加量、溶剂水的用量、固化温度和导电填料种类对涂层电热性能的影响,并测试了最佳条件所得涂层的使用性能.结果显示,水性丙烯酸树脂与石墨的质量比为5∶5时,涂层在80 V的电压下通电5 min,表面温度可达95℃.溶剂水的添加量宜23%~27%,涂层固化温度宜50℃左右.在所选炭黑、煅后焦、无烟煤、三氧化二铝、二氧化硅和碳化硅这6种填料中,石墨与炭黑复合后所得涂层电热性能最好.当m(水性丙烯酸树脂)∶m(石墨)∶m(炭黑)=5∶4∶1时,40 V电压时涂层表面温度可迅速达到100℃以上,且耐水性、耐热性、硬度和附着力均满足使用要求.","authors":[{"authorName":"赵海霞","id":"3cf215c3-98e3-49f3-bf06-2d3a63d279f4","originalAuthorName":"赵海霞"},{"authorName":"夏金童","id":"59a47960-25ee-4618-98e6-d05421d3c7a4","originalAuthorName":"夏金童"},{"authorName":"王双","id":"49551509-2875-4c00-9c5d-61c30fec20ec","originalAuthorName":"王双"},{"authorName":"赵庆才","id":"941206d3-d358-429d-9539-1f440d4cc08b","originalAuthorName":"赵庆才"},{"authorName":"赵敬利","id":"1c9d33fd-3c44-4fb3-90cf-335249e0baf8","originalAuthorName":"赵敬利"},{"authorName":"李允柱","id":"335e215c-597d-44dd-b909-511b408b5c92","originalAuthorName":"李允柱"},{"authorName":"刘奉来","id":"cea56c4e-8717-46d4-b149-296f99b18a36","originalAuthorName":"刘奉来"}],"doi":"","fpage":"777","id":"081050b9-16cb-4753-a2da-37305bbe1539","issue":"14","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"8cc4f733-61ee-4761-9589-fe60c78e3a47","keyword":"水性丙烯酸树脂","originalKeyword":"水性丙烯酸树脂"},{"id":"e6885279-8d83-40e2-aef5-7ec34c5386b3","keyword":"填料","originalKeyword":"填料"},{"id":"1515f582-8440-4343-841f-d67afd4ad548","keyword":"石墨","originalKeyword":"石墨"},{"id":"1bac4c5c-8bb6-4917-a424-72c5eef290a3","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"a14be469-96e0-4f03-8902-db89067ef04f","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"c2bbf563-972f-45d2-8451-b867c495a6eb","keyword":"电热性能","originalKeyword":"电热性能"}],"language":"zh","publisherId":"ddyts201514003","title":"水性炭系电热涂料的制备及性能研究","volume":"34","year":"2015"},{"abstractinfo":"选取膨润土作为陶瓷基体,以鳞片石墨、预处理石墨及炭黑作为导电原料,碳化硅作为增强原料,经球磨混合、50MPa模压成型和1000℃热处理3h后制备出炭/陶复合电热材料。采用XRD和SEM对其物相组成和微观形貌进行表征,并对其通电发热性能、力学性能和抗氧化性能进行了测试和分析。所制备的炭/陶复合材料具有优异的电热性能,在交流低电压(10V)下即可迅速升温,并在较高温度下保持相对稳定,研制的样品中最高发热温度可达643℃。通过调整碳化硅含量,复合材料抗弯强度可达14.3MPa。通过将炭材料和陶瓷材料复合,可有效改善炭材料的抗氧化性,使其明显氧化失重温度升高200℃左右。","authors":[{"authorName":"魏炜","id":"e731d603-e3de-4b01-8d36-f64dd22603e5","originalAuthorName":"魏炜"},{"authorName":"夏金童","id":"b9f78ac5-05f4-46ac-8f5d-9c3ffd441295","originalAuthorName":"夏金童"},{"authorName":"李劲","id":"65c0b651-b3f4-4a5d-9841-50e438b1ae99","originalAuthorName":"李劲"},{"authorName":"赵敬利","id":"052bb595-8885-4de4-b38e-730c25e7acb0","originalAuthorName":"赵敬利"},{"authorName":"赵庆才","id":"8eee1232-2339-4941-a5c2-e1de3381176c","originalAuthorName":"赵庆才"},{"authorName":"李允柱","id":"538b1f58-6600-4db5-879b-0fdf74a30e98","originalAuthorName":"李允柱"},{"authorName":"刘奉来","id":"daa1d445-05f6-4685-86df-0b180a2414c2","originalAuthorName":"刘奉来"}],"doi":"","fpage":"1619","id":"917e3b84-89ee-4a2d-ac2d-a0f8ba927a29","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2f6359b2-a032-4147-b962-44c166fc225c","keyword":"炭/陶复合电热材料","originalKeyword":"炭/陶复合电热材料"},{"id":"5c184812-e4a7-40d0-ab01-84dede3fe934","keyword":"电热性能","originalKeyword":"电热性能"},{"id":"ea03768c-adfa-47a8-aea3-3f1d082067c9","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"a6a04b7c-a012-4059-a87b-6e76fa662329","keyword":"抗氧化性能","originalKeyword":"抗氧化性能"}],"language":"zh","publisherId":"gncl201109020","title":"新型炭/陶复合电热材料的研制","volume":"42","year":"2011"},{"abstractinfo":"测试了几种编织工艺聚丙烯腈基碳纤维及其电热元件的电热性能,并进行了电热辐射机理分析.结果表明:编织工艺对碳纤维(毡)电热体及其电热元件的电热温升、阻温特性、热惯性均有较大影响;采用多股绳编织工艺,可以改善碳纤维电热元件的电热性能,降低其热惯性,同时也可降低电热体自身的表面负荷.编织工艺与电热辐射特性结合,可以实现温度的自我调节,提高碳素电热材料的温敏效应.","authors":[{"authorName":"曹伟伟","id":"b6d528f4-b1e7-426c-9b90-e5b73e0a6705","originalAuthorName":"曹伟伟"},{"authorName":"朱波","id":"0ed48637-9fc4-4fea-9126-529c02d9d8ee","originalAuthorName":"朱波"},{"authorName":"张敏","id":"664ad12b-c1ba-48e6-a8df-3375a9b7ef27","originalAuthorName":"张敏"},{"authorName":"王成国","id":"7a7cc151-3b63-4e4b-91a8-122614fc33b0","originalAuthorName":"王成国"}],"doi":"10.3969/j.issn.1000-3738.2007.09.008","fpage":"26","id":"42602515-1374-4297-b76b-3312c154aadb","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"54573a22-4e5b-473e-9e10-7ac1a8c9b41f","keyword":"聚丙烯腈基碳纤维(毡)","originalKeyword":"聚丙烯腈基碳纤维(毡)"},{"id":"a255a9b3-6383-4c1b-987d-f9c29d371782","keyword":"电热性能","originalKeyword":"电热性能"},{"id":"165b787c-de5e-444b-a469-d06969123711","keyword":"编织工艺","originalKeyword":"编织工艺"}],"language":"zh","publisherId":"jxgccl200709008","title":"加捻和编织工艺对聚丙烯腈基碳纤维电热元件电热辐射特性的影响","volume":"31","year":"2007"},{"abstractinfo":"为了提高碳素发热元件的电热性能,测试了不同工艺碳素纤维发热元件的电热温升和热惯性,针对碳素纤维发热元件的结构特性,建立了其传热方程并进行求解.结果表明:无芯碳素纤维发热元件在相同表面负荷范围内的电热温升约高出支撑芯元件20℃以上,而股线无芯元件的瞬时温升约高出支撑元件60℃以上;惰性气氛下对碳素纤维进行瞬时高温除杂,所得元件电热温升和120 s时瞬时温升约高出其他元件10℃以上;采用5%和30%两种定型胶质量浓度所得元件的电热温升差约40℃左右、140 s时瞬时温升差约60℃左右,较高质量浓度的定型胶可提高元件电热温升、减小热惯性.碳素纤维的发射率是影响元件电热性能的重要指标,提高发射率可获得电热温升高、热惯性小的碳素发热元件.","authors":[{"authorName":"朱波","id":"87b4b412-ddf2-4fe5-a6d7-beb099c58b65","originalAuthorName":"朱波"},{"authorName":"曹伟伟","id":"8b34636d-d060-42d9-b7a8-bb22d8c4347f","originalAuthorName":"曹伟伟"},{"authorName":"张秀玲","id":"dd536a99-4993-431a-b33d-b694669ce930","originalAuthorName":"张秀玲"},{"authorName":"董兴广","id":"04784b85-cfde-4be9-89f2-cf959725ecfd","originalAuthorName":"董兴广"},{"authorName":"王成国","id":"99b5a34d-4b02-4088-8b5b-e830ab221406","originalAuthorName":"王成国"}],"doi":"","fpage":"356","id":"05cd0fde-b001-46cd-bc66-4296d100ea80","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"0cc5cb55-88f9-4c17-9627-26c0c7cbeccb","keyword":"碳素纤维","originalKeyword":"碳素纤维"},{"id":"393d7a51-9bcf-4ab6-a3b5-bc09ad2e840c","keyword":"电热特性","originalKeyword":"电热特性"},{"id":"668423e1-21e8-4660-aa13-4104322d1390","keyword":"发射率","originalKeyword":"发射率"}],"language":"zh","publisherId":"clkxygy201003014","title":"碳素纤维发热元件电热性能的研究","volume":"18","year":"2010"},{"abstractinfo":"研究了炭黑-聚酯复合型导电高分子材料的电阻率随炭黑填充率及加工成型工艺变化的关系及其伏安特性和力学性能.实验结果表明,材料的电导率较高,具有非线性伏安特性和负温度系数效应,主要用作导电材料和电阻材料.","authors":[{"authorName":"林静","id":"762191bb-03cf-49c9-8452-6ec1f22af0f7","originalAuthorName":"林静"},{"authorName":"刘丽敏","id":"684a9b00-4a51-4377-b086-12ece00a5988","originalAuthorName":"刘丽敏"},{"authorName":"李长江","id":"257da4a2-1ed9-4db7-9399-e8f7f79b123d","originalAuthorName":"李长江"},{"authorName":"冉君","id":"a674461d-05cc-4ba7-addc-e38061e30b21","originalAuthorName":"冉君"},{"authorName":"李福刚","id":"15a4df7b-2ed7-4bd3-ad99-f6afe8ac910d","originalAuthorName":"李福刚"}],"doi":"","fpage":"107","id":"e1a6ee46-7d6c-45c0-9b80-756291c9f06d","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"760220a2-1dab-4302-a116-6fd4539bd698","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"2a195e94-343e-4e00-9b5e-b3372d531b8f","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"04fd69c0-5af2-4804-ac81-9afab9140968","keyword":"渗流阈值","originalKeyword":"渗流阈值"},{"id":"c0159b87-b794-45d3-9bfe-0482588d8868","keyword":"伏安特性","originalKeyword":"伏安特性"}],"language":"zh","publisherId":"gfzclkxygc200003031","title":"炭黑-聚酯复合型导电高分子材料的电热性能研究","volume":"16","year":"2000"},{"abstractinfo":"分别以多壁碳纳米管、石墨烯/多壁碳纳米管以及石墨烯作为导电填料制备水性羟基丙烯酸-氨基树脂基电热涂料,填料在固化后涂层中的质量分数均为50%.对3种涂层的导电性、电热性、机械性能进行研究,结果表明:石墨烯涂层在导电性、电热性方面优于多壁碳纳米管涂层,而后者在附着力和耐屈挠性方面优于前者;二者按照质量比1∶4复合时涂层可以同时获得良好的导电性、电热性和机械性能,整体效果最佳.从复合涂层表面和截面SEM照片可以看出,石墨烯和多壁碳纳米管在树脂内分散均匀,形成了很好的内部网络,推测该网络不仅有利于涂层实现良好的导电性,也可有利于其保持良好的机械性能.","authors":[{"authorName":"张朋","id":"1e82a9ea-0cf6-4952-b44d-29c7fa8f9110","originalAuthorName":"张朋"},{"authorName":"刘舒","id":"3da1501c-fefb-45cc-8469-6bd54ee8dcfe","originalAuthorName":"刘舒"},{"authorName":"魏志凯","id":"e07d3fa8-3aad-4f3b-9280-d05f4e927210","originalAuthorName":"魏志凯"},{"authorName":"孙静","id":"4d8f69c3-9662-43ed-9316-bfa871b480ff","originalAuthorName":"孙静"}],"doi":"","fpage":"23","id":"939f95c9-b530-4254-864b-e4156137961a","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"5e8d84f7-f687-4079-b755-38b6e13a2f92","keyword":"水性电热涂料","originalKeyword":"水性电热涂料"},{"id":"377ac64c-55a5-44c8-a71f-1bacac64a719","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"873ede6f-dc7b-4f1f-b8f8-42a4e6a2e82f","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"54368b47-12f8-47d9-8da4-b32ab0ebacaa","keyword":"低压发热","originalKeyword":"低压发热"},{"id":"ce78f13a-d20b-49dd-8045-ecfa98831580","keyword":"耐屈挠性","originalKeyword":"耐屈挠性"}],"language":"zh","publisherId":"tlgy201704005","title":"纳米碳材料水性电热涂料的制备与性能研究","volume":"47","year":"2017"}],"totalpage":8710,"totalrecord":87097}