{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在不同浓度配比的HCO3-和SO42-混合溶液中,利用循环极化电化学测试方法和SEM,对Cu工作电极的循环极化行为和点蚀表面形貌进行了系统的研究.结果表明,在高电位范围的循环极化实验中,Cu的点蚀行为可分为活性溶解型点蚀和钝化膜破裂型点蚀;随SO42-浓度的升高Cu点蚀的敏感性增大.由于HCO3-与SO42-的协同作用,随HCO3-浓度升高点蚀敏感性呈先增大后减小的规律.在钝化膜破裂型点蚀中,SO42-提高Cu点蚀的诱发能力;HCO3-降低Cu点蚀的诱发能力.2种离子对点蚀自修复能力的影响无明显规律.","authors":[{"authorName":"王长罡","id":"bb9750a0-3da5-438e-afdd-c7ea68f3e545","originalAuthorName":"王长罡"},{"authorName":"董俊华","id":"951ff9d7-a1f5-45eb-a437-1798c177c287","originalAuthorName":"董俊华"},{"authorName":"柯伟","id":"f25ffcbb-fe7b-4ae3-b415-9aa9cbe48b77","originalAuthorName":"柯伟"},{"authorName":"陈楠","id":"e822b41d-9a18-4785-8655-b197fbe5febe","originalAuthorName":"陈楠"}],"doi":"10.3724/SP.J.1037.2011.00537","fpage":"85","id":"74e8a131-5506-4daf-8e9f-661b9568ae78","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"63caa935-3280-49a5-950b-b87edccd93b5","keyword":"高放废物地质处置","originalKeyword":"高放废物地质处置"},{"id":"bbeb526d-92a9-4360-a309-0597f482faea","keyword":"Cu点蚀","originalKeyword":"Cu点蚀"},{"id":"ebf37625-4afe-4258-ada5-7f6271299461","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"bb0493dd-d8a6-4e14-9666-f116b79b00b1","keyword":"HCO3","originalKeyword":"HCO3"},{"id":"97e37bbd-254a-419d-b72c-bf03ee1b0674","keyword":"SO42-","originalKeyword":"SO42-"}],"language":"zh","publisherId":"jsxb201201012","title":"HCO3-和SO42-对Cu点蚀行为的影响","volume":"48","year":"2012"},{"abstractinfo":"采用循环极化和电化学阻抗谱研究了退火状态和时效状态的CrCoMo不锈钢在3.5%NaCl溶液中的腐蚀行为.结果表明,退火态CrCoMo不锈钢经时效处理后点蚀电位负移,钝化膜保护性下降,材料的耐蚀性能降低.其原因是时效处理使得第二相沿晶界析出,材料的组织均匀性变差. ","authors":[{"authorName":"马力","id":"c0b72c68-3623-4454-93ad-1ddf546d47bf","originalAuthorName":"马力"},{"authorName":"阎永贵","id":"8b41d366-30e1-4054-aea6-41f134be8734","originalAuthorName":"阎永贵"},{"authorName":"李小亚","id":"a580bf7b-ac07-4208-b270-48506583074e","originalAuthorName":"李小亚"}],"doi":"10.3969/j.issn.1005-748X.2004.09.003","fpage":"376","id":"9f6dc0b5-14cd-43fe-ac20-55749430f1a9","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"6fafee58-a9b8-4295-9e17-8b5134142bb0","keyword":"CrCoMo不锈钢","originalKeyword":"CrCoMo不锈钢"},{"id":"cde284d0-5bfb-4728-934b-54f630a74118","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"20ffc6a6-5baf-40eb-a1fc-09f1cdb34b09","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"},{"id":"c21ec395-2507-46fa-a2d9-3b9559ab5f84","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"fsyfh200409003","title":"时效处理对CrCoMo不锈钢耐蚀性能的影响","volume":"25","year":"2004"},{"abstractinfo":"采用循环极化研究了CrCoMo不锈钢在去离子水和不同浓度NaCl溶液中的腐蚀行为,探讨了Cl-浓度对其耐蚀性能的影响.结果表明,在NaCl溶液中,CrCoMo不锈钢的耐蚀性能变差,且随着Cl-浓度增加,耐蚀性能降低;腐蚀形貌呈现孔蚀特征.第二相沿晶界析出及夹杂物的存在,使CrCoMo不锈钢表面难以形成完整钝化膜.","authors":[{"authorName":"马力","id":"0ff64db3-fcf7-453e-a1a1-76925285f62b","originalAuthorName":"马力"},{"authorName":"阎永贵","id":"e1d21d3c-c633-4ac6-a4e4-032333cd86b4","originalAuthorName":"阎永贵"},{"authorName":"李小亚","id":"012e6c33-d8ad-42c3-b1ce-62e3eb9b807b","originalAuthorName":"李小亚"}],"doi":"10.3969/j.issn.1002-6495.2005.03.010","fpage":"172","id":"7f0ef644-1eb1-4d00-9413-92a4f2eb7303","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"8c1f9d72-68ba-4909-92aa-2c59583e4d28","keyword":"CrCoMo不锈钢","originalKeyword":"CrCoMo不锈钢"},{"id":"20d07032-f191-48d0-a5ba-4f17c0fac88e","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"09a6ee79-cd0c-47b7-a1db-51eca7bca122","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"756c54a3-2d97-4da2-9b67-5c1e4aa86ffe","keyword":"Cl-浓度","originalKeyword":"Cl-浓度"}],"language":"zh","publisherId":"fskxyfhjs200503010","title":"Cl-浓度对CrCoMo不锈钢耐蚀性能的影响","volume":"17","year":"2005"},{"abstractinfo":"采用循环极化和电化学阻抗方法,研究了不同温度下溶解氧对304不锈钢在海水中腐蚀电化学性能的影响。循环极化结果表明,在不同温度条件下,随着溶解氧浓度的增加,不锈钢自腐蚀电位均略微正移,点蚀电位在4℃低温环境下正移,15℃条件下负移。在4℃、7.5mg/L溶解氧条件下以及15℃时3.0mg/L、7.5mg/L溶解氧条件下,304不锈钢点蚀修复性能下降。电化学阻抗表明,在天然海水浸泡试验时间内,电化学阻抗谱都呈现单容抗弧,表现为一个时间常数。钝化膜随着溶解氧的升高稳定性下降。","authors":[{"authorName":"郑家青","id":"8171209b-e21c-478c-ab5a-fe1f37a5b477","originalAuthorName":"郑家青"},{"authorName":"龚利华","id":"f1a5405d-2f60-4109-ab33-76684bb24d7f","originalAuthorName":"龚利华"},{"authorName":"郭为民","id":"2e58da71-18a2-4a11-a8ad-04b3ba633d68","originalAuthorName":"郭为民"},{"authorName":"侯健","id":"c7c71dfc-6101-4d8f-8aa0-88dcf711f27b","originalAuthorName":"侯健"}],"doi":"","fpage":"708","id":"bc47719b-93c7-4278-a64b-8b25d779d834","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"b676ca08-b41d-425f-bba7-5c11328f876f","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"a911e4d9-5b79-4b2a-aa3a-f33182af5641","keyword":"溶解氧","originalKeyword":"溶解氧"},{"id":"db750c3e-c631-4c01-8fde-d938e25a93da","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"e1b93c68-dcd1-4368-b52c-2c6a2dac9d74","keyword":"低温环境","originalKeyword":"低温环境"}],"language":"zh","publisherId":"fsyfh201109011","title":"不同温度下溶解氧对304不锈钢在海水中腐蚀性能的影响","volume":"32","year":"2011"},{"abstractinfo":"在HCO-3和Cl-浓度不同的溶液中,用循环极化的电化学测试方法和SEM,对Cu的循环极化行为和点蚀表面形貌进行了研究.结果表明,该体系中Cu的腐蚀行为可概括为活性溶解型腐蚀、钝化型腐蚀、活性溶解型点蚀和钝化膜破裂型点蚀等4种类型;在HCO-3或Cl-单独存在环境中,Cu表面不发生点蚀,只有Cl-和HCO-3共同存在且起协同作用时,Cu表面才发生点蚀;活性溶解型点蚀区域中,点蚀敏感性随Cl-浓度的升高而增大,而随HCO-3浓度的升高先增大后减小;钝化膜破裂型点蚀区域中,点蚀敏感性随Cl-浓度的升高和HCO-3浓度的降低而增大.","authors":[{"authorName":"王长罡","id":"0d357c38-3036-45f1-b493-69053d43aa70","originalAuthorName":"王长罡"},{"authorName":"董俊华","id":"66743b5f-ef83-4b1b-8635-150c04c90ed4","originalAuthorName":"董俊华"},{"authorName":"柯伟","id":"c869a442-a5ff-4d20-ab55-cdfceea4e5cd","originalAuthorName":"柯伟"},{"authorName":"陈楠","id":"43eea3f8-8382-4d22-a8e6-55766c301924","originalAuthorName":"陈楠"},{"authorName":"李晓芳","id":"8af960f3-a1f0-4d94-9257-c060f38f90e0","originalAuthorName":"李晓芳"}],"doi":"10.3724/SP.J.1037.2011.00773","fpage":"1365","id":"5cb98d4d-eb07-4ccb-9ace-8e19fec2e81d","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4d270608-ff75-4d75-8664-c4e0539e2f96","keyword":"高放废物","originalKeyword":"高放废物"},{"id":"26f21007-a826-400b-8b08-e2ca04c8e5ee","keyword":"Cu","originalKeyword":"Cu"},{"id":"3eea9477-8965-4116-b25a-f664faa7b609","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"7358b48f-349f-4ccb-8c5d-d7ce6786c1c5","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"1f79b447-950a-4002-a7c3-ea4d61cf90d1","keyword":"HCO-3","originalKeyword":"HCO-3"},{"id":"c609ef8d-8975-490a-b5a3-d1e939b8f9b8","keyword":"Cl-","originalKeyword":"Cl-"}],"language":"zh","publisherId":"jsxb201211012","title":"HCO-3和Cl-混合体系中Cu的点蚀行为研究","volume":"48","year":"2012"},{"abstractinfo":"采用线性极化法和循环极化法,比较两种铝合金在不同pH值的3%NaCl溶液中的腐蚀速度、点蚀敏感性与蚀点发展趋势和它们的腐蚀特性.运用扫描电镜观察了铝合金的显微组织,比较铝合金的组织成分,分析杂质元素对耐蚀性能的影响.结果表明,除pH=9.5外,其它试验条件下铝合金ZL102(A)的腐蚀速度均小于铝合金LF6(B);铝合金A的点蚀敏感性较铝合金B小;铝合金B的蚀点发展趋势总体大于铝合金A;铝合金B中含多种杂质元素导致其耐点蚀性能较铝合金A差.","authors":[{"authorName":"汪俊英","id":"6783dfbd-cd87-45f5-9929-87ee69e11d29","originalAuthorName":"汪俊英"},{"authorName":"孔小东","id":"ca57c32d-b946-4ffb-8652-0641fbf9fc65","originalAuthorName":"孔小东"}],"doi":"","fpage":"41","id":"47bc92d1-3265-4d31-904e-911f0a55f696","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"4133a26b-7e7d-465f-b888-2b648888bbad","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"618516bb-68ee-4def-abe9-cf89edd2e831","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"13350725-87c9-4996-9ce3-f64b9816bfbb","keyword":"线性极化","originalKeyword":"线性极化"},{"id":"b582d568-ff0d-40d7-b134-34acc476a660","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"3bcf7eab-2614-4951-8ffe-0f288321b3d1","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"fskxyfhjs201101010","title":"两种铝合金在3% NaCl溶液中的腐蚀特性","volume":"23","year":"2011"},{"abstractinfo":"为了探索辽河油田土壤中温度对高强度管线钢腐蚀行为的影响及规律,采用循环极化、动电位极化、交流阻抗等电化学测试方法,并结合试样表面观察手段进行了相关研究.结果表明:辽河油田土壤温度为0~15 ℃时,X80管线钢腐蚀表现为钝化型腐蚀,试样的腐蚀速率增大的趋势较为缓慢;当温度为25~ 45℃时,X80钢转变为活性溶解型腐蚀,金属腐蚀速率逐渐增大;随着温度的升高,X80钢的腐蚀现象越发严重,腐蚀形貌也由很少的腐蚀坑逐渐转化成为大面积腐蚀,金属的耐腐蚀能力降低;温度在15~25℃区域内,试样极化电阻变化显著,腐蚀电流密度大幅度增加,X80钢在该体系中最为敏感,此温度区域对X80钢腐蚀行为的影响最大.","authors":[{"authorName":"杨旭","id":"77b2acc9-5de2-4729-9d36-e2034600a087","originalAuthorName":"杨旭"},{"authorName":"吴明","id":"cc15aefb-f2f1-450c-bdee-33966f21812f","originalAuthorName":"吴明"},{"authorName":"谢飞","id":"9cfdacb6-ddc0-4ba6-b01d-9c8a923bce75","originalAuthorName":"谢飞"},{"authorName":"王丹","id":"197a045c-d4b9-4d27-a4fb-54425e33f889","originalAuthorName":"王丹"},{"authorName":"潘哲","id":"cd0dbf6b-a8c9-428b-b7d5-04793bf99f68","originalAuthorName":"潘哲"},{"authorName":"周伟光","id":"e1e9e73e-04d2-4455-9371-f573e8328e89","originalAuthorName":"周伟光"}],"doi":"","fpage":"74","id":"3ab1fe8c-2645-4a5c-9b72-eeb6d5093aac","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ba317b31-4457-4c46-8a99-a2817d6e7e1d","keyword":"X80管线钢","originalKeyword":"X80管线钢"},{"id":"076d0ae7-df61-4c97-ba18-81205b081e10","keyword":"温度","originalKeyword":"温度"},{"id":"15fa4653-485a-4b5d-8aec-8f0e357aa243","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"5c529b9f-48d9-43eb-b0b3-1966a985c513","keyword":"动电位极化","originalKeyword":"动电位极化"},{"id":"80a9020d-0fc0-4d66-ace4-3317b794c1b7","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"clbh201609019","title":"辽河油田土壤中温度对高强度管线钢腐蚀行为的影响","volume":"49","year":"2016"},{"abstractinfo":"通过循环极化曲线、Mott-Schottky曲线以及电化学阻抗谱等方法研究了温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响.结果表明:随着温度升高,Cr26Mo1超纯高铬铁素体不锈钢的自腐蚀电位降低,腐蚀电流密度增大,点蚀电位下降,钝化膜阻抗降低.Cr26Mo(1)不锈钢钝化膜的半导体类型和性质在不同温度下发生改变.Cr26Mo1不锈钢发生点蚀的孕育期随着温度的升高而缩短,点蚀敏感性增加,已发生点蚀的试样不能够自修复.","authors":[{"authorName":"魏欣","id":"550c7daf-111b-4ac1-9228-48d7569a23f0","originalAuthorName":"魏欣"},{"authorName":"董俊华","id":"79b40e74-a89a-44b7-b1fd-8f4f25392fa3","originalAuthorName":"董俊华"},{"authorName":"佟健","id":"19457dc6-c669-4b05-b63a-933a83c8f3d2","originalAuthorName":"佟健"},{"authorName":"郑志","id":"9547554a-92bd-4ed8-8866-e1315a0eb1f4","originalAuthorName":"郑志"},{"authorName":"柯伟","id":"333e9b47-6520-4da2-992c-7441490cebe5","originalAuthorName":"柯伟"}],"doi":"10.3724/SP.J.1037.2011.00489","fpage":"502","id":"3cef17b4-bcaa-4f01-903b-f79e1ca12919","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"fd72afa4-a126-40b8-8913-892826f19a30","keyword":"超纯高铬铁素体不锈钢","originalKeyword":"超纯高铬铁素体不锈钢"},{"id":"1333a707-093f-4373-8f29-8a387181f8c4","keyword":"钝化膜","originalKeyword":"钝化膜"},{"id":"0a909087-d951-48bd-a349-e08e4fda8e89","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"d27ebb42-ac29-45e0-95bb-4ecc1f2ebfa6","keyword":"点蚀","originalKeyword":"点蚀"}],"language":"zh","publisherId":"jsxb201204018","title":"温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响","volume":"48","year":"2012"},{"abstractinfo":"通过浸泡实验研究了不同浸泡时间下X80管线钢在库尔勒土壤模拟溶液中形成的腐蚀产物膜的变化规律,通过SEM观察了腐蚀产物膜的微观形貌,通过XRD分析了腐蚀产物膜的物相组成;借助循环极化曲线和电化学阻抗等方法,研究了腐蚀产物膜对X80管线钢点蚀行为的影响规律和机理.结果表明:随着浸泡时间的延长,X80管线钢在库尔勒土壤模拟溶液中形成的腐蚀产物膜逐渐增厚,致密性逐渐提高.当浸泡时间达到168h以后,腐蚀产物膜明显地分为了内外两层.表面存在的腐蚀产物膜可以阻碍或抑制X80管线钢的点蚀行为,这主要是因为表面腐蚀产物膜减少了蚀孔萌生的几率,增大了蚀孔长大的阻力.","authors":[{"authorName":"张弟","id":"b4c5839c-8b83-4159-a91f-74abded0ccd2","originalAuthorName":"张弟"},{"authorName":"梁平","id":"e132af0a-fc2c-4872-a0bd-9c18ff43e2ec","originalAuthorName":"梁平"},{"authorName":"张云霞","id":"e3ab0f96-5324-4fa3-9c21-03584fd26f96","originalAuthorName":"张云霞"},{"authorName":"史艳华","id":"46be4fe4-b83e-4457-a73d-40c82c229462","originalAuthorName":"史艳华"},{"authorName":"秦华","id":"e55ad919-3980-4f12-9609-b9ab2407a52e","originalAuthorName":"秦华"}],"doi":"10.11902/1005.4537.2015.151","fpage":"313","id":"73ac381d-09eb-41fe-8bec-cbfd5a8e0ce3","issue":"4","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"2d8b27a5-4d31-410f-ad16-24dcc7604c14","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"},{"id":"fcd643a4-b5e2-4456-8abe-f9b2af335a92","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"891f4b91-d225-44f5-8158-3aa650672da6","keyword":"循环极化","originalKeyword":"循环极化"},{"id":"4ebb2ddc-43a0-427f-812e-d08844bb02f2","keyword":"X80管线钢","originalKeyword":"X80管线钢"}],"language":"zh","publisherId":"zgfsyfhxb201604004","title":"库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响","volume":"36","year":"2016"},{"abstractinfo":"将循环电场引起电荷注入并产生局部相分解的理论引入到氧空位模型中,建立了一个解析形式的钙钛矿结构铁电薄膜极化疲劳模型.结合该模型讨论了铁电薄膜与金属电极间的低介电常数界面层对疲劳特性的影响,认为界面层对疲劳的产生起关键作用.运用该模型分析了不同松弛时间、电压、温度下的疲劳特性,并与已报道的实验结果进行了对比,模型计算结果与实验数据具有很好的一致性.","authors":[{"authorName":"宁平凡","id":"fb2ecaef-ef28-4b11-a60e-181fadc456ae","originalAuthorName":"宁平凡"},{"authorName":"崔彩娥","id":"9db1ce7e-1eca-4f05-9c25-6042b3a676d2","originalAuthorName":"崔彩娥"},{"authorName":"黄平","id":"c4e755a1-8b34-4cbd-887e-7b40dafbd4e6","originalAuthorName":"黄平"},{"authorName":"康爱国","id":"59a70a2d-94f2-4a4d-abfc-a8e94cae5527","originalAuthorName":"康爱国"},{"authorName":"郝虎在","id":"1946b4d2-4347-4f18-9b0d-94c88a412deb","originalAuthorName":"郝虎在"}],"doi":"","fpage":"1511","id":"93b36181-ce1a-4c15-a25c-b2ba1840ebe2","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"30051a09-7c1c-471a-9702-843525f6fba4","keyword":"极化疲劳","originalKeyword":"极化疲劳"},{"id":"071aabb8-8833-4c99-a563-d7ab396a611c","keyword":"铁电薄膜","originalKeyword":"铁电薄膜"},{"id":"0fad2f60-656a-4e88-b8bf-d9054907ef7b","keyword":"氧空位","originalKeyword":"氧空位"},{"id":"949dc995-dbf7-43ff-a9b9-44649bed37cb","keyword":"电荷注入","originalKeyword":"电荷注入"}],"language":"zh","publisherId":"rgjtxb98200906044","title":"循环电场下钙钛矿铁电薄膜的极化疲劳机制","volume":"38","year":"2009"}],"totalpage":1306,"totalrecord":13055}