{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用攀西地区储量丰富的高钙镁低品位钛铁矿制备符合沸腾氯化需要的高品质富钛料是推动钛行业发展的关键.通过对攀西钛铁矿矿物组成和结构等物相特性分析,提出了氧化还原改性-盐酸浸出制备人造金红石的方法.先在实验室进行工艺条件优化试验,确定了关键参数.在此基础上,进行了5 kt/a规模人造金红石的扩大试验.扩大试验实现了连续稳定运行,成功获得了满足沸腾氯化需要的优质人造金红石产品,其TiO2≥90%,CaO+MgO≤1.0%.酸浸产生的废盐酸,采用喷雾焙烧技术得到了回收利用,实现了盐酸闭路循环,确保全流程无“三废”排放.最后,形成了“攀西钛铁矿流态化氧化—还原—常压浸出—废酸回收”制造人造金红石的成套工艺及操作制度.","authors":[{"authorName":"叶恩东","id":"fa582942-099d-44e3-8d6d-83322b5c6ec3","originalAuthorName":"叶恩东"},{"authorName":"程晓哲","id":"186090e3-beae-4424-8f39-2ecf5bfa7368","originalAuthorName":"程晓哲"},{"authorName":"缪辉俊","id":"d0859d71-75fd-445f-a011-c2d2fedf461a","originalAuthorName":"缪辉俊"},{"authorName":"张溅波","id":"8b0d458f-d9e0-4a60-a19f-7a41e542eebd","originalAuthorName":"张溅波"},{"authorName":"吴轩","id":"306158f1-112f-4629-a01f-6186b907f1fe","originalAuthorName":"吴轩"}],"doi":"10.7513/j.issn.1004-7638.2015.01.002","fpage":"7","id":"e4043dc9-37b7-4d33-8fe0-ad7fd3bf41d7","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"2560f171-d1d2-4f23-b0e4-6fc0d2ddc9c6","keyword":"人造金红石","originalKeyword":"人造金红石"},{"id":"468c5dc7-af63-4cdb-967e-6b3acb0044ab","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"e06e8efa-1658-4fed-b5f5-524579989891","keyword":"氧化还原改性—盐酸浸出","originalKeyword":"氧化还原改性—盐酸浸出"}],"language":"zh","publisherId":"gtft201501002","title":"攀西钛精矿制备人造金红石研究","volume":"36","year":"2015"},{"abstractinfo":"对熔盐氯化废渣进行氯化盐回收,并对回收氯化盐用于钛铁矿盐酸浸出体系作了初步研究.结果表明,水浸可以高效地将熔盐氯化废渣中的可溶氯化盐和不溶氧化物分离.水浸后剩余不溶残渣仅为11%,主要由Fe2O3、(Fe,Mg)2TiO5和以及(Ca,Al,Mg) SiO3等性质稳定的物质组成,便于堆存,对环境无害.而KCl、NaCl等废渣中主要氯化物在水浸母液蒸发结晶盐中富集,Cl元素回收率超过95%.回收得到的氯化盐添加到钛铁矿盐酸浸出体系中,可以提高钛铁矿的浸出反应活性.添加氯化盐比例越大,得到的人造金红石产品TiO2品位越高.添加质量比为50%的氯化盐,可使人造金红石TiO2品位由80.8%提升至84.5%.","authors":[{"authorName":"张溅波","id":"ec3bb6e1-6fa5-44d8-9ace-340c4d85b737","originalAuthorName":"张溅波"},{"authorName":"吴轩","id":"0b9b4829-8142-41ce-a068-89314a4c846f","originalAuthorName":"吴轩"},{"authorName":"缪辉俊","id":"f2051c92-f792-4f9d-bd00-ea1d683b8fce","originalAuthorName":"缪辉俊"},{"authorName":"周丽","id":"1a0510da-65ab-44c2-998b-19757d0dcbdd","originalAuthorName":"周丽"}],"doi":"10.7513/j.issn.1004-7638.2015.04.009","fpage":"48","id":"ec1b633f-fdd7-4a0e-b828-c1afbba80522","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2a8ab460-d737-486f-a07c-5145a290247e","keyword":"熔盐氯化","originalKeyword":"熔盐氯化"},{"id":"63eaac10-cea3-4c2d-95e4-90c7aa44d380","keyword":"废渣","originalKeyword":"废渣"},{"id":"75c35945-3a3a-440d-be87-fad8a02c8f0d","keyword":"氯化盐","originalKeyword":"氯化盐"},{"id":"d765fe83-7a1c-4db3-81d2-080ccafaa732","keyword":"回收","originalKeyword":"回收"},{"id":"fb848f3e-55f9-422b-b02c-4ec9825ea2a7","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"4b3c701b-75b1-4455-b653-19f0ebc70528","keyword":"盐酸浸出","originalKeyword":"盐酸浸出"}],"language":"zh","publisherId":"gtft201504009","title":"熔盐氯化废渣回收氯化盐及其促进钛铁矿盐酸浸出研究","volume":"36","year":"2015"},{"abstractinfo":"在600~750℃的温度范围、空气气氛下焙烧攀枝花钛铁矿,通过观察分析钛铁矿氧化后的微观形貌、物相组成以及氧化动力学,对钛铁矿的氧化机理进行了详细地研究.试验结果表明钛铁矿的氧化机制是一种Fe、O离子相互竞争扩散的反应机制.在反应初期,钛铁矿的氧化是通过Fe离子的向外扩散完成,氧化产物是Fe2O3和Fe2Ti3O9,其中Fe2O3会在颗粒表面富集;当反应进行到一定程度后(表面Fe2O3层厚度达到1~2 μm),O离子的向内扩散在反应中占主导,颗粒内部逐渐形成Fe2O3和TiO2.由于从Fe离子扩散转变到O离子扩散均发生在表面氧化铁层厚度达到1 ~2 μm时,这一转变时间与温度和钛铁矿颗粒粒径无关,所以Fe离子扩散在整个氧化过程中所占的比重会随着钛铁矿颗粒粒径的减小而增大,而O离子扩散则相反.","authors":[{"authorName":"张溅波","id":"d68ae774-2508-4be4-acde-076b6d0c6373","originalAuthorName":"张溅波"},{"authorName":"朱庆山","id":"bdb6837a-ccbf-4abe-9d09-a551275ba8c9","originalAuthorName":"朱庆山"}],"doi":"10.7513/j.issn.1004-7638.2013.03.001","fpage":"1","id":"f4ed77eb-e6cd-4424-96cc-fd8d77aacab0","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"cd8516fe-abc9-4fe5-8b7b-1031ac0acb27","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"2876ad0d-74a0-46dd-be5a-54624a6d75d8","keyword":"氧化机理","originalKeyword":"氧化机理"},{"id":"631342ae-4f31-4162-892b-eccc90735590","keyword":"离子扩散","originalKeyword":"离子扩散"},{"id":"633888c1-c58c-43f8-87c2-88fbe90cb8e1","keyword":"Fe离子","originalKeyword":"Fe离子"},{"id":"f1f7b71e-d775-4933-93d9-e93f55865774","keyword":"O离子","originalKeyword":"O离子"}],"language":"zh","publisherId":"gtft201303001","title":"钛铁矿氧化过程中的离子竞争扩散机制","volume":"34","year":"2013"},{"abstractinfo":"为解决攀枝花钛精矿粒度过细的问题,采用攀枝花钛精矿冶炼钛渣-氧化还原焙烧改性-盐酸浸出工艺制备高品质富钛料,为氯化法钛白粉生产提供优质原料.试验主要以常规钛渣为研究对象,借鉴钛精矿氧化还原焙烧参数对钛渣进行改性处理,通过考察浸出压力、添加剂和浸出方式对钛渣主体杂质相黑钛石M3O5固溶体的浸除效果来研究改性钛渣适宜的浸出工艺.结果表明,常压浸出对M3O5溶出效果差;添加剂可溶氯化盐、乙醇和金属铁粉不能有效提高M3O5浸除能力;二段浸出对钛渣浸出效果影响较小;加压浸出和搅拌浸出均有利于提高钛渣酸浸除杂(M3O5)效果,但都不能制备出合格的富钛料.这主要是由于钛渣改性残留较多的难溶黑钛石M3O5固溶体,结构较为致密,反应活性差所致.由于低品位钛渣改性处理后可能含较少的M3O5相,采用此种改性钛渣进行盐酸加压一段搅拌浸出(浸出条件为:145℃浸出7h,浸出液固比为2∶1,盐酸浓度为20%),能获得wTiO2>93%,w∑(caO+MgO)<1.5%的高品质富钛料,满足国内沸腾氯化原料要求.","authors":[{"authorName":"吴轩","id":"74a7f420-8a39-475c-a747-0e934d90030e","originalAuthorName":"吴轩"},{"authorName":"张溅波","id":"496450e2-19b7-425f-80c7-8792579818e2","originalAuthorName":"张溅波"},{"authorName":"缪辉俊","id":"212a1828-4f04-4e7d-8a47-20bb270b0306","originalAuthorName":"缪辉俊"},{"authorName":"叶恩东","id":"fe7c2910-bf5a-4dc7-b38f-79be35b9d0f0","originalAuthorName":"叶恩东"},{"authorName":"张兴勇","id":"bf36dd10-9629-4b2e-ae48-e2efe101d069","originalAuthorName":"张兴勇"}],"doi":"10.7513/j.issn.1004-7638.2016.04.001","fpage":"1","id":"519c2857-1db7-4ba6-a7ad-5a3ad20e1502","issue":"4","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"c5f7411b-8279-4a88-a0c3-c6d13e927ddf","keyword":"钛渣","originalKeyword":"钛渣"},{"id":"c4ae1e84-da3b-4a6e-a726-28ef874b3cad","keyword":"盐酸浸出","originalKeyword":"盐酸浸出"},{"id":"5b25bdc9-ec15-4a5e-8fcd-2c1ff6d3fde1","keyword":"富钛料","originalKeyword":"富钛料"},{"id":"d0e4a976-5fba-465a-9dfe-67effab579b9","keyword":"添加剂","originalKeyword":"添加剂"}],"language":"zh","publisherId":"gtft201604001","title":"攀枝花钛渣盐酸浸出制备高品质富钛料","volume":"37","year":"2016"},{"abstractinfo":"以攀枝花钛铁矿为试验对象,详细研究了预氧化对岩矿型钛铁矿还原行为的作用机理.结果表明,未处理的岩矿型钛铁矿的还原速率较慢,而预氧化能够有效提高还原速率.这是因为在预氧化矿还原前期会发生Fe3+→Fe2+(FeTiO3)的快速转变反应.该反应会生成大量孔洞,破坏了钛铁矿的致密结构,有利于后续还原反应的进行.预氧化焙烧温度越高,焙烧时间越长,钛铁矿的还原速率越快.此外,预氧化还会使后续还原产生的金属Fe晶粒变小,分布变弥散.","authors":[{"authorName":"张溅波","id":"76f11a2b-c21d-4823-9c5b-4025c0bd6364","originalAuthorName":"张溅波"}],"doi":"10.7513/j.issn.1004-7638.2017.02.003","fpage":"16","id":"060364fd-0836-4d63-929a-df19690e3dca","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"a3c20c5b-9e8f-4e2d-bd2b-6654ac1d32b4","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"87df03f5-3848-498a-8573-409a88b5a6b3","keyword":"还原","originalKeyword":"还原"},{"id":"6dc84d63-7210-452f-a0fb-2e21466bf136","keyword":"预氧化","originalKeyword":"预氧化"},{"id":"fe2f698d-bb1c-4d33-934e-635060b42b91","keyword":"焙烧温度","originalKeyword":"焙烧温度"},{"id":"01cd98c5-f12d-43d3-a5f8-c5fc1f3da445","keyword":"时间","originalKeyword":"时间"}],"language":"zh","publisherId":"gtft201702003","title":"预氧化对岩矿型钛铁矿还原行为的作用机理研究","volume":"38","year":"2017"},{"abstractinfo":"制备高品质沸腾氯化富钛料是钛白生产中的重要环节.采用X射线荧光光谱仪(XRF)、X射线衍射仪(XRD)和扫描电镜(SEM)等分析手段对攀枝花钛渣和钛精矿在氧化还原改性-盐酸法制备富钛料工艺进行了系统的对比研究.结果表明,钛铁矿和钛渣均保持致密结构,且都含有少量酸溶性差的硅酸盐相,但是两者的主要物相分别为酸溶性好的M2O3型固溶体(主要为FeTiO3)和酸溶性差的黑钛石M3O5型固溶体(包括Ti3O5,Mg2TiO5和FeTi2O5等).钛精矿经过改性后会变为多孔的FeTiO3,浸出反应活性非常高,常压浸出即可得到合格的沸腾氯化富钛料.而钛渣在现有的氧化还原-常压盐酸浸出工艺中的反应活性要比钛铁矿差很多,改性后钛渣仍有一定含量的难溶M3O5固溶体,且矿相致密结构未被完全破坏,常压浸出处理不能有效除杂,需要加压浸出才能得到高品位富钛料.另外,钛渣硅酸盐杂质相在整个改性和盐酸浸出过程中的变化不大.","authors":[{"authorName":"张溅波","id":"888cfca4-345f-4e15-9b10-8d4115764dbc","originalAuthorName":"张溅波"},{"authorName":"缪辉俊","id":"8bd5cf26-fb94-400b-aa1f-9741ac4971c1","originalAuthorName":"缪辉俊"},{"authorName":"程晓哲","id":"c966e2c1-9bd6-40c8-a8c5-3eeb4db23a59","originalAuthorName":"程晓哲"},{"authorName":"叶恩东","id":"2c5da9b3-e672-406b-b318-b567173b3667","originalAuthorName":"叶恩东"}],"doi":"10.13373/j.cnki.cjrm.2016.04.014","fpage":"385","id":"96686b83-40a7-44d5-badf-148f72969722","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"67f7a50b-d180-43f1-84f5-42d13d588d05","keyword":"钛渣","originalKeyword":"钛渣"},{"id":"38e73eac-b8db-4dc8-97d9-7f70725ff880","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"784a8c9e-8714-4a06-ab48-091cf0578a31","keyword":"富钛料","originalKeyword":"富钛料"},{"id":"c40c1627-afcc-4abc-936f-5a18e5ff519e","keyword":"氧化还原改性","originalKeyword":"氧化还原改性"},{"id":"8a2abad1-fa81-42df-a992-3b6bbd2fe8dc","keyword":"盐酸酸浸","originalKeyword":"盐酸酸浸"}],"language":"zh","publisherId":"xyjs201604014","title":"攀枝花钛渣和钛精矿在氧化还原改性-酸浸工艺中对比研究","volume":"40","year":"2016"},{"abstractinfo":"氧化焙烧能够有效脱除钛铁矿中的有害元素S.对攀枝花钛铁矿中S元素的存在形式、氧化脱硫的工艺条件和脱硫机理进行了详细地研究.结果表明,攀枝花钛铁矿中大部分S以FeS形式存在,少量S固溶在FeTiO3和硅酸盐相中.在氧化焙烧过程中,钛铁矿中的FeS首先被脱除,然后才是固溶S被脱除.当氧化温度在650 ~750℃时,氧化焙烧仅发生FeS的脱除,脱硫反应速率快,钛铁矿脱硫率最高为85% ~87%.固溶S的脱除需要更高的焙烧温度,且反应速率相对较慢.当氧化温度升至950~1 050℃时,钛铁矿经过60 min焙烧,即可脱除大部分FeS和固溶S,脱硫率达到96%~98%.","authors":[{"authorName":"张溅波","id":"c540582a-461c-4844-abc8-4c68edaa81d5","originalAuthorName":"张溅波"},{"authorName":"赵青娥","id":"b2f1a00b-5e6d-457c-88a5-fd763f8ec01e","originalAuthorName":"赵青娥"},{"authorName":"缪辉俊","id":"98329bae-1b10-4663-b523-5a1b99c8c4fe","originalAuthorName":"缪辉俊"}],"doi":"10.7513/j.issn.1004-7638.2014.06.001","fpage":"1","id":"e9e15733-a58f-410d-9139-adc1d03498fa","issue":"6","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"d81e117c-3f32-4676-9ce4-c0eacabab920","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"ded3fc80-db2f-44a5-96aa-8d815e8bec7b","keyword":"氧化","originalKeyword":"氧化"},{"id":"0be2cd2e-c5c0-4548-bb0b-aaee77366ef2","keyword":"脱硫","originalKeyword":"脱硫"}],"language":"zh","publisherId":"gtft201406001","title":"攀枝花钛铁矿氧化脱硫机理研究","volume":"","year":"2014"},{"abstractinfo":"为满足溅渣护炉对炉渣性能的要求,对转炉冶炼造渣工艺进行了试验研究,并对试验前、后炉渣的化学成分与熔化性能作了统计分析。","authors":[{"authorName":"谢集祥","id":"3650185c-b65f-409f-9373-1554ca699a88","originalAuthorName":"谢集祥"}],"doi":"10.3969/j.issn.1001-1447.2001.03.003","fpage":"10","id":"26842dd5-b403-47e9-9e30-d88ba043896c","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"92a64904-286f-440c-b056-3fc4e1af240c","keyword":"溅渣护炉","originalKeyword":"溅渣护炉"},{"id":"13fdd0af-86f5-49d1-ba4f-7b4330a5b635","keyword":"造渣工艺","originalKeyword":"造渣工艺"},{"id":"b771fedb-26a9-4fc1-9dc5-315aaa54b294","keyword":"化学成分","originalKeyword":"化学成分"},{"id":"a90cca24-8a9e-4eb8-8d12-5a2f4debddcf","keyword":"熔化性能","originalKeyword":"熔化性能"}],"language":"zh","publisherId":"gtyj200103003","title":"转炉溅渣护炉炉渣研究","volume":"1","year":"2001"},{"abstractinfo":"介绍了攀钢在半钢炼钢工艺条件下进行的溅渣护炉实践和所取得的成效,对溅渣护炉存在的问题进行了分析。","authors":[{"authorName":"刘新","id":"36ce32b1-3321-40b9-8fa4-a1e3dc70326f","originalAuthorName":"刘新"},{"authorName":"王二军","id":"bc1ceb79-837e-42f6-bf4c-10f9679a15ee","originalAuthorName":"王二军"},{"authorName":"张槐","id":"6e2c482c-fef2-4431-b905-03ba544342f2","originalAuthorName":"张槐"},{"authorName":"陈坤","id":"0613f639-5082-4f21-a298-352a7854ebd4","originalAuthorName":"陈坤"}],"doi":"10.3969/j.issn.1004-7638.2001.01.011","fpage":"59","id":"a11c9a5c-6385-47d6-bbbb-cdc382799d45","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"97f7b635-8337-4b41-9ca9-b6c9550d294f","keyword":"转炉","originalKeyword":"转炉"},{"id":"894a8425-759f-4167-bdce-fc8eacb04968","keyword":"炉龄","originalKeyword":"炉龄"},{"id":"ed82b11b-ef1d-487f-8f8d-2971aec6b02d","keyword":"溅渣","originalKeyword":"溅渣"}],"language":"zh","publisherId":"gtft200101011","title":"攀钢转炉溅渣护炉的实践与分析","volume":"22","year":"2001"},{"abstractinfo":"为了深入研究溅渣护炉的基本原理,在试验室进行了溅渣护炉小型热模拟试验.发现在溅渣前后渣的矿相结构发生了变化等现象.并根据试验结果讨论了操作工艺对溅渣高度与厚度的影响及溅渣层与炉衬的结合机理.","authors":[{"authorName":"佟溥翘","id":"965a310d-c6d9-4646-a69b-75f528bd0b32","originalAuthorName":"佟溥翘"},{"authorName":"崔淑贤","id":"64a8a469-175f-4d02-9144-124725a5e6b5","originalAuthorName":"崔淑贤"},{"authorName":"刘浏","id":"13ce3066-3236-41dc-b798-f10996c01558","originalAuthorName":"刘浏"}],"doi":"","fpage":"23","id":"c1f2701b-4be9-47ae-b343-ba43a6ead783","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"482e8df6-e62c-4eb9-ad6c-ac4ba693950b","keyword":"转炉","originalKeyword":"转炉"},{"id":"a0cabb35-e495-494b-8127-b9dd9f546093","keyword":"溅渣","originalKeyword":"溅渣"},{"id":"88ef821e-7c56-43c6-9eee-78fb668f2f9b","keyword":"炉龄","originalKeyword":"炉龄"},{"id":"55eea6e4-eaf8-4f4d-aae2-8bf3d6881a69","keyword":"结合机理","originalKeyword":"结合机理"}],"language":"zh","publisherId":"gt199811006","title":"溅渣护炉小型热模拟试验研究","volume":"33","year":"1998"}],"totalpage":330,"totalrecord":3297}