{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用Au-Cu-Pt合金钎料带,对氧化锆陶瓷与Kovar 4J28合金进行了钎焊研究,探讨了钎焊温度和保温时间对接头强度的影响,并分析了氧化锆陶瓷与4J28合金的界面结合情况。结果表明,氧化锆陶瓷与Kovar 4J28合金在1040℃保温20 min焊接,得到的焊接器件能够承受最大的剪切强度为85 MPa;在压力差为60 kPa时,封接器件不泄漏。","authors":[{"authorName":"鲁盛会","id":"359e800f-79b5-470d-9db2-9915c935cce6","originalAuthorName":"鲁盛会"},{"authorName":"李金英","id":"a173d422-c1f7-4afa-b2aa-8bf823b03749","originalAuthorName":"李金英"},{"authorName":"韩月奇","id":"13f34556-d4a6-4124-b4ac-fa3919e11825","originalAuthorName":"韩月奇"},{"authorName":"姚京苏","id":"88202acd-56d1-418a-a5ec-6c36bdacabd8","originalAuthorName":"姚京苏"}],"doi":"","fpage":"33","id":"7c64613e-aeac-432b-bfac-2f2441bbf3f3","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"e9809329-e65b-435d-82f5-4b8b529fc22d","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"56cd5703-57b3-4c0c-b322-138ee0d5c6c1","keyword":"陶瓷","originalKeyword":"陶瓷学"},{"id":"73681e92-15e6-4104-b761-9e7b65b7e6c7","keyword":"氧化锆","originalKeyword":"氧化锆"},{"id":"61bec75d-c6f4-4e20-b725-8ce382c18682","keyword":"钎焊","originalKeyword":"钎焊"},{"id":"fc1a8f6d-5e08-4b86-98d6-bda108a4245e","keyword":"金基钎料","originalKeyword":"金基钎料"}],"language":"zh","publisherId":"gjs201601007","title":"氧化锆陶瓷与Kovar 4J28合金的金基钎焊研究","volume":"37","year":"2016"},{"abstractinfo":"碳化硼陶瓷以其独特的结构和性能广泛应用于诸多工业领域,其中作为一种耐磨或减磨材料,碳化硼陶瓷的摩擦性能备受关注.总结了近年来国内外关于碳化硼陶瓷的摩擦性能的研究报道,并从摩擦温度、负载、湿度、速度、磨程和配副材料等多种影响因素出发,讨论了碳化硼陶瓷的摩擦特性.从实验结果可以看出,碳化硼陶瓷的摩擦性能随实验条件的差异而出现较大范围的波动,摩擦因数在0.95~0.02之间.通过分析碳化硼陶瓷的摩擦与减磨机制,分析和讨论了碳化硼的摩擦性能,并提出了改善其摩擦性能的方法和建议.","authors":[{"authorName":"王国亮","id":"db529cef-d69f-427a-9914-fe7260b0fb0c","originalAuthorName":"王国亮"},{"authorName":"蔡星会","id":"91acedd1-f6d2-4b0e-b0b2-8b3542ba2285","originalAuthorName":"蔡星会"},{"authorName":"姬国勋","id":"c3caa67f-fcd4-409a-a43e-5379dc97ba86","originalAuthorName":"姬国勋"},{"authorName":"卢江仁","id":"32e49f6e-15d1-49b8-bb8b-2ac3ba3cef4e","originalAuthorName":"卢江仁"}],"doi":"","fpage":"45","id":"66f05c48-dcf3-4418-8c89-668560c528ba","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9c111d74-4664-4649-a429-4fc38b408781","keyword":"碳化硼","originalKeyword":"碳化硼"},{"id":"9ffe12cd-00e7-4f00-9946-29a4236c63de","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"e7a6b038-9343-4a17-9dce-493b938a3f83","keyword":"摩擦","originalKeyword":"摩擦学"}],"language":"zh","publisherId":"cldb201207010","title":"B4C陶瓷摩擦性能研究现状与分析","volume":"26","year":"2012"},{"abstractinfo":"采用多弧离子镀技术在Ti(C,N)基金属陶瓷基体上沉积了TiN/TiAlN多层涂层,通过对不同速度、载荷下的微量摩擦磨损试验前后涂层金属陶瓷的显微形貌、组织、成分、相结构及粗糙度的观察分析,研究了涂层金属陶瓷的摩擦性能.结果表明,TiN/TiAlN涂层金属陶瓷的平均摩擦系数均低于金属陶瓷基体本身的平均摩擦系数;在相同载荷下,滑动速度较低时,涂层金属陶瓷磨损表面粘着严重,有GCr15掉下的大块粘着物,随着滑动速度的增大,由严重粘着对磨偶件材料向少量粘着变化,其平均摩擦系数增大.在相同的滑动速度下,载荷较大时,TiN/TiAlN涂层金属陶瓷的平均摩擦系数较大.TiN/TiAlN涂层金属陶瓷的磨损机制主要是粘着磨损和磨粒磨损.","authors":[{"authorName":"郑立允","id":"c6fd9deb-3fd7-4ff0-9e89-897b6be03d29","originalAuthorName":"郑立允"},{"authorName":"赵立新","id":"a261cc7a-2444-4765-823c-75891a99713f","originalAuthorName":"赵立新"},{"authorName":"张京军","id":"37da1723-888c-4059-8e4a-bc443fc534a4","originalAuthorName":"张京军"},{"authorName":"熊惟皓","id":"06e58c38-77c6-4d3d-a055-80f497841a4c","originalAuthorName":"熊惟皓"}],"doi":"","fpage":"492","id":"0756c7d2-22e7-435c-a149-66e7eb3f1d78","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"70aa5ba8-ed0c-486d-a721-a66e4d56e14b","keyword":"金属陶瓷","originalKeyword":"金属陶瓷"},{"id":"abdc403c-a789-4f4c-a029-50fc1b6e4a6a","keyword":"多弧离子镀","originalKeyword":"多弧离子镀"},{"id":"e68c2af9-812e-4c80-901f-aa9db0926f19","keyword":"多层涂层","originalKeyword":"多层涂层"},{"id":"7add8bcb-0ac9-4d7b-a434-1a263256062a","keyword":"摩擦性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"xyjsclygc2007z3118","title":"TiN/TiAlN涂层金属陶瓷的摩擦性能研究","volume":"36","year":"2007"},{"abstractinfo":"以Si3N4,SiC,ZrO2分别与45钢,GCr15,锡青铜QSn4-3,锡基巴氏合金ZChSnSb8-4组成的摩擦副为研究对象,对微量润滑条件下的工程陶瓷金属摩擦副进行了摩擦磨损正交实验.结果表明:陶瓷金属摩擦副整体具有良好的摩擦性能,摩擦因数为0.1~0.25,陶瓷和金属偶件的磨损率均较低,为10 7mm3/(N·m)数量级.其中,Si3 N4巴氏合金的摩擦因数最低,SiC巴氏合金的磨损率最小.Si3 N4具有自润滑特性,摩擦表面能够形成氧化膜,使其与金属组合具有较佳的摩擦性能.锡基巴氏合金作为对磨件,易与陶瓷形成金属化合物润滑膜,其摩擦性能优于其他三种金属,Si3N4锡基巴氏合金组合摩擦性能最为优异.","authors":[{"authorName":"田欣利","id":"5b150b00-4cb3-4826-a216-a3f8e8994497","originalAuthorName":"田欣利"},{"authorName":"王龙","id":"fd7424cf-1c94-495e-9ba2-d5de663be955","originalAuthorName":"王龙"},{"authorName":"王朋晓","id":"a593f5fa-aa4e-4917-b06e-c8899b63d832","originalAuthorName":"王朋晓"},{"authorName":"吴志远","id":"791a1792-a2c2-4585-8e5e-818c41bda06e","originalAuthorName":"吴志远"},{"authorName":"张保国","id":"ac2e5e2d-e55b-4197-8fb6-4c0c66d5362a","originalAuthorName":"张保国"},{"authorName":"王健全","id":"07f7ba00-14eb-4090-a76a-ab5eab712cc6","originalAuthorName":"王健全"}],"doi":"10.11868/j.issn.1001-4381.2014.09.008","fpage":"45","id":"b913abfe-980f-4c1c-930f-71e8ec5412fe","issue":"9","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"bcecd7a8-fb4f-467e-91a3-a38aec2d2ad5","keyword":"工程陶瓷-金属","originalKeyword":"工程陶瓷-金属"},{"id":"36eaace8-90a2-4c76-8376-843917d12754","keyword":"最优摩擦副组合","originalKeyword":"最优摩擦副组合"},{"id":"a1d20bd2-60fb-48c3-b670-901d6376e25a","keyword":"微量润滑","originalKeyword":"微量润滑"},{"id":"68d6f0f3-4738-4561-9788-1bdc9300bd1e","keyword":"摩擦性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"clgc201409008","title":"工程陶瓷-典型金属摩擦副的摩擦性能及组合优化","volume":"","year":"2014"},{"abstractinfo":"比较了在蒸馏水润滑下Si3N4、Al2O3陶瓷与灰铸铁副的摩擦性能.结果表明:A12O3陶瓷的磨损体积远小于Si3N4,但与Si3N4配副时灰铸铁的磨损体积明显小于与A12O3配副时的磨损体积,其摩擦系数也较小(0.02).用SEM观察发现Al2O3陶瓷磨擦表面粗糙,有少量的转移膜形成;而Si3N4磨擦表面光滑,与其对应的灰铸铁磨面上存在含石墨的润滑膜.","authors":[{"authorName":"斯松华","id":"e009f3fd-9371-42d7-b177-9737fde507f7","originalAuthorName":"斯松华"},{"authorName":"方亮","id":"686a32ae-a946-4fd4-999a-67a197ea1f1a","originalAuthorName":"方亮"}],"doi":"10.3969/j.issn.1000-3738.2001.07.010","fpage":"37","id":"df7a554b-154e-4e9a-aec8-7e0cd442416f","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"169581df-54fc-4793-82ea-2fb12c38939a","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"5f39c88c-39aa-4e75-8221-6620f01b8231","keyword":"灰铸铁","originalKeyword":"灰铸铁"},{"id":"283af0e4-a048-44a8-aaf2-19f614025295","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"87362552-7e7d-4e6c-a476-ca4374a6c712","keyword":"石墨","originalKeyword":"石墨"}],"language":"zh","publisherId":"jxgccl200107010","title":"陶瓷与灰铸铁配副在水润滑下的摩擦性能","volume":"25","year":"2001"},{"abstractinfo":"利用微弧氧化技术在AZ31镁合金表面原位生长陶瓷层,用球-盘磨损实验机对试样的摩擦性能进行了研究.结果表明:AZ31镁合金表面微弧氧化后可以形成均匀的表面陶瓷改性层,改性层由疏松层、致密层和截面层组成,厚约20 μm.微弧氧化处理后的试样在干摩擦小滑动距离下表现出良好的耐磨性.并用SEM,XRD分析了微弧氧化陶瓷层的显微组织、表面形貌和相结构.","authors":[{"authorName":"陈飞","id":"9cb3e79a-185c-4f79-aaf1-bb95261e1791","originalAuthorName":"陈飞"},{"authorName":"周海","id":"132a8ca9-d2c4-4678-acdb-95f7af4ea8c9","originalAuthorName":"周海"},{"authorName":"姚斌","id":"f65fee64-dea9-41c7-9046-4d026d0f0341","originalAuthorName":"姚斌"},{"authorName":"杨英歌","id":"06f737e0-0cf8-4a94-bdf5-d7c9f88528d8","originalAuthorName":"杨英歌"},{"authorName":"吕俊霞","id":"4dff2a3c-f51d-4e53-afb0-e52434c110dd","originalAuthorName":"吕俊霞"},{"authorName":"吕反修","id":"213ce349-2666-440b-8d7c-65486cfa3e5a","originalAuthorName":"吕反修"}],"doi":"","fpage":"806","id":"f7f653e4-5f1f-41d5-9959-2bff5666a426","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e26245c7-0217-459e-b075-40828ae5c209","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"33f76048-be39-46a6-833b-dca64445985b","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"32b25db0-b9b1-4ecb-b5d6-ca244061871c","keyword":"摩擦性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"xyjsclygc200605033","title":"镁合金表面微弧氧化陶瓷层摩擦性能的研究","volume":"35","year":"2006"},{"abstractinfo":"采用球-盘磨损实验方法,研究了不同厚度2A12铝合金微弧氧化陶瓷层的摩擦特性及其磨损性能,用SEM观察陶瓷层的表面形貌、截面显微组织以及磨损后的形貌,XRD研究陶瓷层的相组成.研究表明,随氧化时间延长,样品表面膜厚度趋于均匀,界面处氧化膜变得比较平坦.陶瓷层主要由α-Al2O3和γ-Al2O3相组成,随氧化时间的延长、厚度增大,γ-Al2O3相在陶瓷层中的含量逐渐减少,而高温态、高硬度的α-Al2O3相的含量随氧化时间的延长逐渐提高,陶瓷层的平均硬度逐渐增大;未磨光、有疏松层的陶瓷层的磨损失重和磨损速率随微弧氧化时间的延长、厚度增大均增大,而磨光、去除疏松层的陶瓷层的磨损失重和磨损速率则均逐渐下降;磨痕的形状均为滑动方向上呈现片状鱼鳞、沟槽,为黏着磨损特征,磨痕未见裂纹.","authors":[{"authorName":"孙志华","id":"397eae6a-3c7f-44fa-aa0e-edd8b287bf0c","originalAuthorName":"孙志华"},{"authorName":"刘明","id":"f2852784-93c4-4631-bde2-406468552c65","originalAuthorName":"刘明"},{"authorName":"国大鹏","id":"b7ccd7df-3d0f-4b01-8c0e-daceca76f1a2","originalAuthorName":"国大鹏"},{"authorName":"郭孟秋","id":"fb3391a2-cc91-4026-9b10-73e5542302e5","originalAuthorName":"郭孟秋"},{"authorName":"陆峰","id":"d991b112-e802-4370-91d6-ec73f9c746c5","originalAuthorName":"陆峰"},{"authorName":"陶春虎","id":"2575d165-f57d-4acb-8deb-9da75502539e","originalAuthorName":"陶春虎"}],"doi":"10.3969/j.issn.1001-4381.2010.11.017","fpage":"69","id":"6361547f-6f7f-4fcc-b8f2-0e50d3ef42ee","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"61e0ecd5-13f8-4934-a6e0-e46d45c083c8","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"0a140e69-4dd9-48d2-853b-3f01601a0d7d","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"2077375a-81e1-4b10-bd07-7373e3b22acb","keyword":"摩擦性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"clgc201011017","title":"不同厚度铝合金微弧氧化陶瓷层摩擦性能研究","volume":"","year":"2010"},{"abstractinfo":"MAX相是一类三元层状化合物,由于其同时具备金属和陶瓷的优异性能,近年来受到人们的广泛关注.MAX相的层状结构预示其将有望成为性能良好的固体润滑材料.主要介绍温度、滑动速度、载荷、对偶种类和显微结构等因素对MAX相材料摩擦磨损性能的影响,综述了MAX相材料在摩擦方面的研究进展.","authors":[{"authorName":"朱元元","id":"ef9888ea-7647-4a33-890f-fc19c809da9f","originalAuthorName":"朱元元"},{"authorName":"周爱国","id":"57e76e63-08ff-4775-96d7-a0f9bb51ed7d","originalAuthorName":"周爱国"},{"authorName":"昝青峰","id":"abdc4460-ce88-4f68-93f2-160e9564ed6c","originalAuthorName":"昝青峰"},{"authorName":"王李波","id":"d0db08c7-efb9-43b5-b48a-5fa22fa1f003","originalAuthorName":"王李波"}],"doi":"10.11896/j.issn.1005-023X.2014.17.018","fpage":"101","id":"eb5afda5-08dd-4746-8e9d-464fb86853ce","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"04d508f0-dd42-41f9-882c-cf0c08d3fb10","keyword":"MAX相","originalKeyword":"MAX相"},{"id":"1f4c4efc-625d-48cc-98dc-28f1be3298a1","keyword":"摩擦氧化物膜","originalKeyword":"摩擦氧化物膜"},{"id":"e942a4cb-1db3-42a3-b670-7925477417f0","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"59ce5aca-3201-484b-892f-c82853be27bf","keyword":"磨损率","originalKeyword":"磨损率"}],"language":"zh","publisherId":"cldb201417018","title":"层状陶瓷材料MAX相的摩擦性能研究进展","volume":"28","year":"2014"},{"abstractinfo":"在SRV摩擦磨损试验机上进行常温干摩擦试验,比较了CoCrMoSi+Al2O3ZrO2和CoCrMoSi+Fe3O4两种大气等离子喷涂金属-陶瓷复合涂层以及C1Mn1Cr1碳钢涂层与35#中碳钢对磨的摩擦特性;利用扫描电子显微镜 (SEM) 和扫描电声显微镜 (SEAM) 观察了磨损表面和亚表层的显微结构,分析了金属-陶瓷复合涂层的磨损机理. 结果表明,粘着磨损占主导地位,同时存在微切削和微裂纹的扩展、连接.","authors":[{"authorName":"彭海涛","id":"4d53f37e-655f-41b2-85b4-9ed027889ef3","originalAuthorName":"彭海涛"},{"authorName":"金元生","id":"ec42d500-67c2-495d-9b71-d607752a6f8e","originalAuthorName":"金元生"},{"authorName":"方健文","id":"ff66f649-17ef-4f4e-ba78-01b9658289f7","originalAuthorName":"方健文"},{"authorName":"殷庆瑞","id":"2f755b9c-0fed-4e7b-89d2-4fe50effa5cb","originalAuthorName":"殷庆瑞"}],"doi":"10.3321/j.issn:1000-324X.2001.01.018","fpage":"110","id":"cd1f67e7-656e-432f-8339-844173a9b573","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e7424fe0-7b97-4bfe-b460-98e143539056","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"b7e57540-d382-4a6b-81dd-c388b46085d8","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"9cf11946-f3b9-406e-94a4-72f4d0d8b9af","keyword":"磨损机理","originalKeyword":"磨损机理"}],"language":"zh","publisherId":"wjclxb200101018","title":"金属-陶瓷复合涂层摩擦特性的SEM和SEAM研究","volume":"16","year":"2001"},{"abstractinfo":"研究了Mo离子注入对Al2O3陶瓷表面摩擦性能的影响,并借助扫描电镜(SEM)、X射线光电子谱仪(XPS)对结果进行了分析比较。","authors":[{"authorName":"崔琳","id":"536fe020-a4ff-4faa-991e-e027122fe2c0","originalAuthorName":"崔琳"},{"authorName":"赵宝荣","id":"ad8aa268-7248-4fc6-bcf5-75b13206c760","originalAuthorName":"赵宝荣"},{"authorName":"高平","id":"d014784b-7cc7-44f5-b222-0ec041dc8e30","originalAuthorName":"高平"},{"authorName":"陈伟","id":"81615585-1760-4a15-bf37-e1afb15f5968","originalAuthorName":"陈伟"}],"doi":"10.3969/j.issn.1004-244X.2001.01.007","fpage":"26","id":"030e1ca4-391d-47d6-af7a-8a0bd56145e6","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"fdfe4562-4f62-45fc-936e-0e1989779040","keyword":"离子注入","originalKeyword":"离子注入"},{"id":"f6dab927-b425-4512-be1a-a8d64f7b8fee","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"97463658-be75-4269-b72d-5c5316d2109b","keyword":"摩擦系数","originalKeyword":"摩擦系数"}],"language":"zh","publisherId":"bqclkxygc200101007","title":"Mo离子注入Al2O3陶瓷对其表面摩擦性能的影响","volume":"24","year":"2001"}],"totalpage":1281,"totalrecord":12802}