{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文利用自行设计的实验系统,对自制的镀金不锈钢极板液态进料直接甲醇燃料电池的性能进行了测试.实验结果表明,较高的氧气压力和流量、较大的甲醇溶液流量、较高的电池温度均有助于强化燃料电池内部的传质过程.另外,在甲醇溶液浓度不超过2.0 kmol/m3的范围内,提高浓度有助于缓解催化层反应物不足的问题,从而改善燃料电池的性能.本文从机理上对这些实验结果进行了分析.","authors":[{"authorName":"郭航","id":"565708d2-cc42-4a51-8b60-363818ddbb9a","originalAuthorName":"郭航"},{"authorName":"马重芳","id":"3c90ae0d-7e3e-4b87-a4ba-0d37a776b4ab","originalAuthorName":"马重芳"},{"authorName":"汪茂海","id":"062d865a-d1a5-409a-b0a6-d13b83523d3b","originalAuthorName":"汪茂海"},{"authorName":"叶芳","id":"7f29b65d-f2e9-4c41-94fa-acc408dcce2f","originalAuthorName":"叶芳"},{"authorName":"王焱","id":"af3c477c-98ea-47f7-9288-e2f7bf28971a","originalAuthorName":"王焱"},{"authorName":"俞坚","id":"002e7d5f-a68a-4ba7-8eb8-bd8595ee7114","originalAuthorName":"俞坚"},{"authorName":"王朝阳","id":"57d1bae5-11b4-4ebe-a6f1-015d49298424","originalAuthorName":"王朝阳"}],"doi":"","fpage":"148","id":"3b8ea5a1-1c22-4545-9794-5b53b5d9eeb8","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"928cf731-8fd4-4e0e-aab6-485905230226","keyword":"直接甲醇燃料电池","originalKeyword":"直接甲醇燃料电池"},{"id":"220be353-aaba-43ff-ae0a-0022b5ae8620","keyword":"传质","originalKeyword":"传质"},{"id":"e9afadb8-7236-449e-825b-d8edd7f6a09a","keyword":"热物理参数","originalKeyword":"热物理参数"},{"id":"15ef4f6d-cb9b-4d7e-8ae0-e4ebc307ba43","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb200401045","title":"热物理参数对燃料电池内传质过程的影响","volume":"25","year":"2004"},{"abstractinfo":"本文采用有限元分析法,应用软件COMSOL,对Cd0.9Zn0.1Te (CZT)晶体垂直布里奇曼生长法进行模拟计算.为了研究固液界面过冷度的影响,通过改进传统的晶体生长模型只考虑热传导和热对流,加上了固液界面前沿过冷度的计算模型,组分过冷临界边界条件约束模型,研究分析了不同温度梯度和生长速率生长CZT晶体的曲率过冷度,组分过冷度,固液界面前沿的过冷度和热应力值.","authors":[{"authorName":"王焱","id":"b7e52ece-25c4-465b-aaa4-0ba5c22f8eea","originalAuthorName":"王焱"},{"authorName":"闵嘉华","id":"4a12a3c8-ce4c-4d9c-a7ad-e247d624ca35","originalAuthorName":"闵嘉华"},{"authorName":"梁小燕","id":"e247727f-211c-411f-95d4-41cc42a5217b","originalAuthorName":"梁小燕"},{"authorName":"张继军","id":"1580f2b4-7a6d-4bf6-94cb-7687153045a5","originalAuthorName":"张继军"}],"doi":"10.3969/j.issn.1007-4252.2011.05.016","fpage":"513","id":"0438507a-a3a8-420a-8a57-ce68ec2e39c5","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"26a03f54-c6e4-4893-8600-78117a361ea1","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"39899954-33dd-47f5-b97d-5075419d8cc5","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"1c8b62e8-269e-42e1-a7f0-aaf265561f3f","keyword":"组分过冷度","originalKeyword":"组分过冷度"},{"id":"29aa4069-1c0f-4045-9dd4-67c92cd776c5","keyword":"曲率过冷度","originalKeyword":"曲率过冷度"},{"id":"a3ef5150-a227-4cd3-9586-1f6dae577400","keyword":"热应力","originalKeyword":"热应力"}],"language":"zh","publisherId":"gnclyqjxb201105016","title":"以有限元分析法对CdZnTe晶体的垂直布里奇曼法生长的组分过冷模拟计算","volume":"17","year":"2011"},{"abstractinfo":"我国是铁矿石资源贫乏国家,矿石品位低,开采成本高.特别是近年来随着我国钢铁产能的迅速提升,铁矿石资源的利用问题愈发突出.本文以资源效率作为衡量天然资源节约程度的指标,设计了一张有时间概念的钢铁产品生命周期铁流图,在此基础上研究铁的排放率、大循环率、产量年均变化率和平均使用寿命对铁资源效率的影响规律,以此指导铁矿资源的高效利用.","authors":[{"authorName":"曹辉","id":"17a3a804-bd16-4909-858c-125a7e9ea07f","originalAuthorName":"曹辉"},{"authorName":"王焱","id":"3ea27774-fec1-4012-81bf-d7af932d4a5f","originalAuthorName":"王焱"},{"authorName":"孙树臣","id":"d6efed85-5abb-40aa-8d99-99f4c9ec828e","originalAuthorName":"孙树臣"},{"authorName":"涂赣峰","id":"ff56d6aa-cffb-4308-bc74-7c5e05b8f8e8","originalAuthorName":"涂赣峰"},{"authorName":"彭可武","id":"eb99513e-424f-4ffa-b7e3-32323d13c692","originalAuthorName":"彭可武"}],"doi":"10.3969/j.issn.1000-6826.2006.06.018","fpage":"49","id":"0a92d465-9a2c-4f80-8aa4-2f053d2dec62","issue":"6","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"bdf41c9c-3da9-49b7-8145-cec84d5b50af","keyword":"钢铁工业","originalKeyword":"钢铁工业"},{"id":"559e54fa-fcd5-447f-a5d8-d55d516fbf89","keyword":"生命周期","originalKeyword":"生命周期"},{"id":"da4e7034-20be-42eb-938a-657d2b270c97","keyword":"铁流图","originalKeyword":"铁流图"},{"id":"c238db66-a28f-4ed6-9f0f-9c0588f463c2","keyword":"资源效率","originalKeyword":"资源效率"}],"language":"zh","publisherId":"jssj200606018","title":"钢铁产品生命周期的铁资源效率研究","volume":"","year":"2006"},{"abstractinfo":"对国内外关于板形模式识别技术的研究现状和发展趋势进行了综述.通过比较,提出了传统的基于最小二乘法的多项式拟合法存在的不足,并对模糊分类、神经网络、遗传算法、混沌优化等智能识别方法在板形模式识别中所具有的优势进行了归纳和总结.最后,对智能方法在板形识别问题中的应用以及板形识别技术的发展趋势进行了展望,为板形检测环节得到理想板形信号提供理论研究方法,并将逐步应用于钢铁板形控制的工业过程中.","authors":[{"authorName":"张雪伟","id":"942854ca-378c-4373-a823-1e569d008cc6","originalAuthorName":"张雪伟"},{"authorName":"王焱","id":"852acc39-3078-4360-a9b7-2b1c3aae8118","originalAuthorName":"王焱"}],"doi":"","fpage":"1","id":"1638f780-347e-46ba-936f-fcd43addd182","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"e6bbfa50-7cd7-4fb9-a349-d97d75d4fe2c","keyword":"板形","originalKeyword":"板形"},{"id":"48188d8c-796c-4761-90fb-ac71653f5083","keyword":"模式识别","originalKeyword":"模式识别"},{"id":"4b7ed4ad-3ddb-42d9-a1b5-c16b4f74202d","keyword":"智能方法","originalKeyword":"智能方法"},{"id":"50df6e80-142d-4134-bbc2-3c02ea6c584c","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"gtyjxb201001001","title":"智能识别方法在板形识别中的应用及发展趋势","volume":"22","year":"2010"},{"abstractinfo":"通过对不同氢含量的TC4合金试件进行车削试验,测量切削力和加工后的表面粗糙度及观察切屑形态,研究氢对TC4合金切削加工性的影响.结果表明:在一定范围内,随氢含量增加,TC4合金的切削加工性提高,并且有一个最佳值,氢含量为0.2%.超过该值后,随氢含量增加,钛合金切削加工性变差.","authors":[{"authorName":"于超","id":"32056ccb-3ad3-4afc-bdb7-809ad3e27bef","originalAuthorName":"于超"},{"authorName":"王焱","id":"8d22b8e7-8ca5-4c9b-b9e0-3f5e2048525a","originalAuthorName":"王焱"},{"authorName":"鲍永杰","id":"1b0ecf56-c118-4d68-93e8-7eab83bfd297","originalAuthorName":"鲍永杰"},{"authorName":"王明海","id":"d484a8e2-3d34-4367-9f8f-0e2a1b385a8b","originalAuthorName":"王明海"}],"doi":"10.3969/j.issn.1007-2330.2009.06.007","fpage":"26","id":"31337bfd-829b-4d16-8a28-9761f8206dd4","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"33f2ff9e-991c-4c7a-b7dd-c415be40debb","keyword":"TC4合金","originalKeyword":"TC4合金"},{"id":"fd78b5d0-f1f6-422d-b0d2-0f8b9cdb2bf1","keyword":"含氢量","originalKeyword":"含氢量"},{"id":"3aa9fbb4-5df3-4c36-947b-c5c3c8d2037a","keyword":"切削加工性","originalKeyword":"切削加工性"}],"language":"zh","publisherId":"yhclgy200906007","title":"氢对TC4合金切削加工性能的影响","volume":"39","year":"2009"},{"abstractinfo":"在自行设计建立的电磁抗垢、减垢实验装置上,对冷态工况下低频电磁抗垢、减垢技术机理进行了实验研究.冷态单次通过、循环实验和高倍扫描电镜结果表明,低频电磁能使污垢晶体的结构发生明显变化并有抑制污垢晶体尺寸长大的作用.","authors":[{"authorName":"陈金辉","id":"30f403a5-296a-4141-9ddb-46d5f77dfb88","originalAuthorName":"陈金辉"},{"authorName":"王湛","id":"3bbc6a80-68b0-446f-9ca9-859b1e18116b","originalAuthorName":"王湛"},{"authorName":"马重芳","id":"cffbf2c8-654c-4dc8-9c59-78433be69c6b","originalAuthorName":"马重芳"},{"authorName":"常宝英","id":"84cb60d4-3514-4d94-bbcc-d0f304fd1a4a","originalAuthorName":"常宝英"},{"authorName":"王焱","id":"5afb31d1-cce2-46d6-b824-d04ec6bca303","originalAuthorName":"王焱"},{"authorName":"雷道亨","id":"6190e677-6eb8-430c-ae49-dbfd879f468e","originalAuthorName":"雷道亨"}],"doi":"","fpage":"608","id":"3ae86a0b-4295-4afc-b6e8-a68c582d4592","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"42612f1f-e147-45b1-bcbb-5cffe259a70b","keyword":"冷态低频电磁抗垢、除垢","originalKeyword":"冷态低频电磁抗垢、除垢"},{"id":"6d0d90fb-8b5f-4a26-824f-9414730360a6","keyword":"污垢晶体","originalKeyword":"污垢晶体"},{"id":"9bfc3be5-68a4-4d64-a39d-30b102a11de4","keyword":"扫描电镜","originalKeyword":"扫描电镜"},{"id":"ec287c6c-d314-41ff-b0a9-317cc547e6a6","keyword":"膜技术","originalKeyword":"膜技术"}],"language":"zh","publisherId":"gcrwlxb200205023","title":"电磁抗垢强化传热技术机理的实验研究","volume":"23","year":"2002"},{"abstractinfo":"利用无压烧结工艺制备了陶瓷靶材,并借助扫描电子显微镜和液压机等测试设备研究了烧结温度对陶瓷靶材显微结构和力学性能的影响.结果表明,随着烧结温度的升高,掺杂Al2O3陶瓷靶材的晶粒尺寸逐渐增大,晶粒形状也由各向异性生长逐步向等轴状发育;靶材的抗弯强度也随着烧结温度的升高先升高后降低,并在1600℃时强度和耐磨性达到最大.","authors":[{"authorName":"周喜","id":"69fe3749-e5bc-463e-b27a-ee22d925a015","originalAuthorName":"周喜"},{"authorName":"陈海焱","id":"fb5e51bc-6716-4e94-8230-412e09dc7ebb","originalAuthorName":"陈海焱"},{"authorName":"陈俊冬","id":"b4d039c4-0ead-4f30-9f63-61080421edd0","originalAuthorName":"陈俊冬"},{"authorName":"卢成渝","id":"7edbcd71-f180-46a9-b112-4406f1e2e39f","originalAuthorName":"卢成渝"},{"authorName":"王焱","id":"2e85ddd9-e811-4c2f-b1c3-c636e0a78564","originalAuthorName":"王焱"}],"doi":"","fpage":"68","id":"53e333ce-504d-4d64-8fb9-db837c92527e","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fbc568a1-af64-4bc5-a946-eaf91bd1d9dc","keyword":"烧结温度","originalKeyword":"烧结温度"},{"id":"afcf3392-a2ed-4239-a20e-0523f8ccf4d6","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"efd6b955-dc5c-4b32-ba80-92a458394744","keyword":"靶材","originalKeyword":"靶材"},{"id":"cc770f83-c35a-4823-8383-971382461b23","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb200914020","title":"烧结温度对冲击磨用Al2O3陶瓷靶材性能的影响","volume":"23","year":"2009"},{"abstractinfo":"运用有限元分析软件Comsol Multiphys-ics,结合晶体生长固液界面曲率分析法,模拟了垂直布里奇曼法生长Cd0.9Zn0.1Te(CZT)晶体。研究了固液界面处曲率变化对于溶质径向偏析的影响,揭示了界面曲率与溶质偏析的内在关联性,并计算了数值。分析了3种晶体生长方式:(1)坩埚匀速生长;(2)两阶段坩埚变速生长;(3)坩埚回熔生长分别对于溶质偏析的影响。采用扫描电子显微镜SEM中的能谱仪EDX测量3种工艺的Zn组分分布:(1)模拟值比对实验结果发现可以运用固液界面的曲率平均值来推算溶质径向组分偏差的大小;(2)模拟推算的溶质径向偏差值更加接近于实验所得的溶质组分偏差最大值;(3)坩埚回熔生长法生长晶体的固液界面的波动性小,界面稳定性最好,溶质径向组分偏差也最小。","authors":[{"authorName":"王焱","id":"f0b50fd0-e303-4ad1-b305-bb6a7ce81aa2","originalAuthorName":"王焱"},{"authorName":"闵嘉华","id":"de6ecd48-2b67-4c93-800c-ef2c0d97c4cc","originalAuthorName":"闵嘉华"},{"authorName":"梁小燕","id":"ec0f5d1c-f795-486b-ac2c-b88263d5ef1c","originalAuthorName":"梁小燕"},{"authorName":"张继军","id":"77261fb3-ab81-4230-b813-a387b96e7b3d","originalAuthorName":"张继军"}],"doi":"","fpage":"2073","id":"594eb8ff-83a8-436e-9d65-210f4a6e1314","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"19e990a6-5b78-458b-8502-f67aea35f56f","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"cad3e583-9e4e-4c58-a31a-84740e36b41d","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"bf2907f9-8ed5-454a-8da2-0f7ecac08f19","keyword":"径向溶质偏析","originalKeyword":"径向溶质偏析"},{"id":"7918059b-5c81-4d91-a6ce-9cef14d82856","keyword":"曲率","originalKeyword":"曲率"},{"id":"0702b6cf-0b4e-43dd-ad53-f7f824759cb6","keyword":"回熔生长","originalKeyword":"回熔生长"}],"language":"zh","publisherId":"gncl201111038","title":"垂直布里奇曼法生长CdZnTe晶体的径向溶质偏析之有限元分析法模拟","volume":"42","year":"2011"},{"abstractinfo":"采用双重退火对Ti8LC低成本钛合金进行热处理,测试其拉伸性能,并对其疲劳裂纹扩展行为进行研究,探索其疲劳断裂机制.结果表明,提高双重退火的第1次退火温度,强度略有升高,塑性降低.da/dN试样断口3个区特征明显:预裂区为解理断裂机制.稳态扩展区裂纹以条纹循环机制向前扩展,同时能观察到很多二次裂纹.快速扩展区的断口呈韧窝型断裂特征.该合金的疲劳裂纹扩展速率对退火温度不敏感.","authors":[{"authorName":"贾蔚菊","id":"e9c902b8-49c9-4f5f-a3b5-0d3f700c666f","originalAuthorName":"贾蔚菊"},{"authorName":"曾卫东","id":"28e7182f-429a-46dc-9b35-2e402a63d690","originalAuthorName":"曾卫东"},{"authorName":"段风川","id":"005d58db-0dd5-4ff4-8936-e99648b14382","originalAuthorName":"段风川"},{"authorName":"王焱","id":"3e802b9b-d66b-4443-b15f-c4c87868e3ee","originalAuthorName":"王焱"},{"authorName":"周义刚","id":"96fa1a5d-8b70-4220-a966-2d784ae2a1be","originalAuthorName":"周义刚"}],"doi":"","fpage":"2171","id":"68705dc2-12fc-497a-8323-de425ba0a184","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"275a7474-79a9-4c0d-af55-24ed93f55ca8","keyword":"低成本钛合金","originalKeyword":"低成本钛合金"},{"id":"bd019297-fe5b-4a33-87e4-c51f5311c247","keyword":"断裂韧性","originalKeyword":"断裂韧性"},{"id":"d6934ab0-9ea9-441e-bfe8-880d74336551","keyword":"疲劳裂纹扩展速率","originalKeyword":"疲劳裂纹扩展速率"}],"language":"zh","publisherId":"xyjsclygc200912022","title":"Ti8LC低成本钛合金疲劳裂纹扩展行为研究","volume":"38","year":"2009"},{"abstractinfo":"LiFePO4正极材料具有原料来源广泛、比容量高、工作电压适中、循环性能好和电化学性能稳定等优点,被认为是下一代锂离子电池首选正极材料.介绍了LiFePO4的橄榄石型晶体结构及主要合成工艺,讨论了针对其缺点的改性研究,并对LiFePO4未来发展方向作了展望.","authors":[{"authorName":"冯哲圣","id":"43308b1d-5d58-447e-82d0-f6f338bac322","originalAuthorName":"冯哲圣"},{"authorName":"王焱","id":"4d26a8a4-165d-47b0-bc1d-53cdd054e968","originalAuthorName":"王焱"},{"authorName":"杨邦朝","id":"58d4b4a4-5c7a-4b9e-83fa-f8ca0daf0992","originalAuthorName":"杨邦朝"},{"authorName":"向勇","id":"10a5cde3-8c0f-4acd-9167-127c02291ae8","originalAuthorName":"向勇"},{"authorName":"赖玲庆","id":"3623f36a-584a-4f93-b120-8b6ffb4d7cc0","originalAuthorName":"赖玲庆"}],"doi":"","fpage":"581","id":"798a0273-9102-40aa-b5a9-c1dfea8598c6","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"15d10e05-87cf-4b1f-9728-04e854150309","keyword":"磷酸铁锂","originalKeyword":"磷酸铁锂"},{"id":"c16dbb58-c20e-4b10-9d50-d6cb352d3ac1","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"985ded4f-b7f4-455a-935a-137de29b6efb","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"gncl201104001","title":"锂离子电池正极材料磷酸铁锂的研究现状","volume":"42","year":"2011"}],"totalpage":8,"totalrecord":77}