{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"调整能源结构、提高用效率是国内外缓解能源危机的重要研究方向,本文针对分布式能源系统与地源热泵系统各自的优缺点,基于化学、物理梯级利用原理与因地制宜基本原则,提出分布式能源系统和地源热泵多能源耦合系统集成新方法,并以一案例系统(天然气燃机耦合地源热泵系统)进行分析.计算结果表明,多能源耦合系统不仅可以进一步提高能源利用效率,而且可为化石能源与可再生能源优势互补的能源利用技术提供新的发展思路,具有重大的现实意义.","authors":[{"authorName":"康书硕","id":"a5021f69-9a80-44bc-913e-0a457bd4d50e","originalAuthorName":"康书硕"},{"authorName":"李洪强","id":"d58f343d-8ae2-4c92-8285-0e975c12e7c4","originalAuthorName":"李洪强"},{"authorName":"蔡博","id":"498a5dd3-39a7-4fe3-97c4-0ccf58a30279","originalAuthorName":"蔡博"},{"authorName":"霍培娜","id":"fcabc242-850b-49c3-8685-e7fd0447bfef","originalAuthorName":"霍培娜"},{"authorName":"朱彩侠","id":"34c3cbb9-4116-4e06-aa45-bdf149bca232","originalAuthorName":"朱彩侠"},{"authorName":"张国强","id":"59b23a73-95a2-410f-8275-5a3f703de1d9","originalAuthorName":"张国强"}],"doi":"","fpage":"817","id":"d8e4d44c-7da8-43a7-ab93-9d9c51ae83a4","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b6f74b2a-26f0-4776-bd27-83b007534809","keyword":"复合系统","originalKeyword":"复合供能系统"},{"id":"0aef6f48-e300-43bf-8da7-1e8db2ef5d05","keyword":"能源梯级利用","originalKeyword":"能源梯级利用"},{"id":"c293f870-9a58-4782-b760-a8445f716395","keyword":"能源利用效率","originalKeyword":"能源利用效率"}],"language":"zh","publisherId":"gcrwlxb201305005","title":"分布式能源系统与地源热泵耦合的系统研究","volume":"34","year":"2013"},{"abstractinfo":"以天然气为燃料,燃气轮机驱动的建筑冷、热、电联产系统具有能源效率高,污染物排放少,安全、可靠等优点.将蓄能与联系统相结合,选择合适的蓄位置,对改善系统变工况性能意义重大.本文建立了带理想蓄装置的冷电联产系统(燃气轮机、吸收机)简化数学模型,以一次能耗最小为目标,分析比较了不同蓄位置对系统性能的影响.结果表明在联系统中加入蓄装置能有效起到减容增效的作用,理想蓄装置放在吸收机后更有利于提高系统性能.","authors":[{"authorName":"张堙","id":"8726a7fb-25e8-4643-a3e4-3f2b5b902036","originalAuthorName":"张堙"},{"authorName":"王馨","id":"07e4037b-711f-480a-8620-d65e58a09ef4","originalAuthorName":"王馨"},{"authorName":"张寅平","id":"6d309409-595a-4cce-b00f-8de627ac8270","originalAuthorName":"张寅平"}],"doi":"","fpage":"587","id":"873e9d4b-cd69-40a4-bcc7-a6156f3215db","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"667266d4-f8cc-4907-a658-e44541b7e8b1","keyword":"理想模型","originalKeyword":"理想模型"},{"id":"03114282-1ab0-4c28-81d7-71e9f23b558e","keyword":"蓄","originalKeyword":"蓄能"},{"id":"a1d1fad7-f56b-4549-806c-cd526d72fd70","keyword":"联系统","originalKeyword":"联供系统"},{"id":"593bda9b-13ed-4960-86c0-e732e3598f81","keyword":"位置","originalKeyword":"位置"},{"id":"b9c7325b-cce4-42c1-b9d8-a061ea49cea5","keyword":"一次能耗","originalKeyword":"一次能耗"}],"language":"zh","publisherId":"gcrwlxb201503028","title":"理想蓄模式下蓄位置对联系统性能影响","volume":"36","year":"2015"},{"abstractinfo":"燃气轮机驱动的冷热电三联系统是我国近年来大力鼓励发展的小型能源供应系统,将蓄装置与联系统结合对系统设备起到减容增效的作用.本文建立了相变蓄型联系统的简化数学模型,提出了在给定实际用户负荷的情况下,以一次能耗最小为优化目标的最佳相变温度确定方法.典型算例分析表明,相变型烟气蓄热器的最优相变温度与用户负荷及设备性能相关,相比于NTU无限大,NTU有限大时,最优相变温度会升高,最小一次能耗会增大.","authors":[{"authorName":"熊飞","id":"24d0247e-ab66-4416-ab73-0c2b08a8819c","originalAuthorName":"熊飞"},{"authorName":"张堙","id":"8869341d-e5ff-41ec-8f1a-a112a6b0b155","originalAuthorName":"张堙"},{"authorName":"王馨","id":"f6670a08-2f94-4150-87a8-67434992de24","originalAuthorName":"王馨"},{"authorName":"张寅平","id":"9c111570-1678-4eb4-91ec-3f7bf6180eae","originalAuthorName":"张寅平"}],"doi":"","fpage":"2730","id":"6f40d24f-cb62-4f71-849a-e3576c7b036f","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0c20d704-4a7b-4f8a-beb9-086d084c7c64","keyword":"可联","originalKeyword":"可联供"},{"id":"8554d139-3f1f-4426-a1c3-8319aab29ed9","keyword":"蓄","originalKeyword":"蓄能"},{"id":"4eff5256-de71-45d8-9630-67e9553db349","keyword":"相变温度","originalKeyword":"相变温度"},{"id":"2bfb2b96-4bd2-4968-9a26-00076146f9c8","keyword":"一次能耗","originalKeyword":"一次能耗"}],"language":"zh","publisherId":"gcrwlxb201512041","title":"相变蓄型联系统最优相变温度研究","volume":"36","year":"2015"},{"abstractinfo":"本文基于的梯级利用原理,把产功和供热有机结合,开拓出新颖的核能Brayton闭式循环功热并系统;基于热力学基本方程推导出系统特性解析式,建立四个独立变量的系统数学模型;应用三种不同的评价准则对系统进行模拟分析,绘制不同条件下的特性线簇,概括了系统性能随独立变量的变化规律,得出许多有价值的结论。","authors":[{"authorName":"林汝谋","id":"068790f4-37fc-4b9d-a907-fe656bd2984b","originalAuthorName":"林汝谋"},{"authorName":"高林","id":"e95ad681-b767-4420-8d6f-211ea429cfef","originalAuthorName":"高林"},{"authorName":"金红光","id":"bbfbfe18-31eb-400e-983e-c6d9e85fbb23","originalAuthorName":"金红光"}],"doi":"","fpage":"397","id":"9280be01-bb76-4ea3-bfa8-cefa7250140f","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fe7eec1b-3c33-49ff-8ea1-d0399655a16c","keyword":"核能","originalKeyword":"核能"},{"id":"0eac14ba-961f-4b64-a627-9349db48d918","keyword":"布雷顿闭式循环","originalKeyword":"布雷顿闭式循环"},{"id":"9a4d0a77-af86-46fa-93cc-8785c16dfbac","keyword":"功热并","originalKeyword":"功热并供"}],"language":"zh","publisherId":"gcrwlxb200004001","title":"核能Brayton闭式循环功热并系统","volume":"21","year":"2000"},{"abstractinfo":"建立了钢铁厂制氧机故障时的系统优化决策模型,并具体应用在宝钢能源部的智能管理系统中.通过开发实例,详细说明了模型构造的思路和方法.系统可对钢铁企业的气体用户和气体生产部门进行供需平衡规划,给出符合决策者意图的专家决策,实现气体的合理利用.该系统充分体现了智能化的特点,使用方便,使决策者能够在决策过程中充分介入.","authors":[{"authorName":"童莉葛","id":"2890da3c-ffb8-4074-9808-000979d3b4b1","originalAuthorName":"童莉葛"},{"authorName":"王立","id":"08b96875-44c3-4936-9727-ec8f8a1ece4f","originalAuthorName":"王立"},{"authorName":"汤学忠","id":"b8eb8dd3-d463-4d2a-9170-c9c8afbb2e64","originalAuthorName":"汤学忠"},{"authorName":"赵立合","id":"fa00d4b9-5cea-4a2e-b759-e7276ad12697","originalAuthorName":"赵立合"},{"authorName":"李化治","id":"9f0e2ad2-0351-46da-a415-fde0399696c5","originalAuthorName":"李化治"},{"authorName":"刘姿","id":"13961fc8-e61f-4c19-a046-ff0cf3595444","originalAuthorName":"刘姿"},{"authorName":"王维敏","id":"1827d155-858b-43a7-9c90-93109a442abb","originalAuthorName":"王维敏"},{"authorName":"程玉之","id":"684e17a3-c376-455f-b4df-724023706134","originalAuthorName":"程玉之"},{"authorName":"章水清","id":"5bfcc219-0893-461c-ab1c-bbcf517ca4f6","originalAuthorName":"章水清"},{"authorName":"钱爱囡","id":"26c7db8b-9b72-400f-9caf-4cf3c6f1a120","originalAuthorName":"钱爱囡"}],"doi":"","fpage":"59","id":"d8f3ba5b-b975-48fa-9182-c4a031f6d428","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c79994b4-7f18-497a-bf46-2eec6dfa8bad","keyword":"模型","originalKeyword":"模型"},{"id":"9e7a2d19-df3e-4ce5-95eb-31a90eac7818","keyword":"智能管理系统","originalKeyword":"智能管理系统"},{"id":"e15faa19-56c2-4ebf-81ac-5bc2a3d1fe6c","keyword":"能源规划","originalKeyword":"能源规划"}],"language":"zh","publisherId":"gt200010016","title":"制氧机故障时系统的优化决策","volume":"35","year":"2000"},{"abstractinfo":"设计并建成一套小型燃气内燃机和高效余热吸附制冷机相结合的微型冷热电联实验系统,对其在不同工况下的运行参数和特性进行实验研究,分析了联系统的节能经济性.联系统可以同时提供峰值发电量12 kW,峰值制冷量9 kW或峰值供热量28 kW.结果表明联系统热电联节能性优于冷电联,热电联一次能源利用率均在70%以上.当天然气价格为1.8元/Nm3和电价0.61元/kWh时,系统投资回收期低于4年.","authors":[{"authorName":"孔祥强","id":"ababb388-2489-49ea-b5ac-eca4e5de8ccf","originalAuthorName":"孔祥强"},{"authorName":"李瑛","id":"8ff861d5-3f83-483e-b39c-7bc9debbd92b","originalAuthorName":"李瑛"},{"authorName":"王如竹","id":"f20b784b-5cd5-4f72-8cc3-c0569dc54e72","originalAuthorName":"王如竹"},{"authorName":"黄兴华","id":"44785ebe-2746-4cab-8cdf-85c29d3628a9","originalAuthorName":"黄兴华"}],"doi":"","fpage":"5","id":"e67345ca-aabc-47cc-af09-afeba6a5e4b0","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d3adaa96-4f24-4fb9-9dad-245f34322f89","keyword":"冷热电联","originalKeyword":"冷热电联供"},{"id":"ed4ee67c-5fe4-49ea-800a-a34b7858d6eb","keyword":"燃气内燃机","originalKeyword":"燃气内燃机"},{"id":"55370600-de24-429b-b7e3-e23382bcdd6e","keyword":"吸附式制冷机","originalKeyword":"吸附式制冷机"},{"id":"5aa3e1b3-5bf0-4c2d-9289-d5019bb03c59","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb2006z1002","title":"基于吸附制冷的微型冷热电联系统实验研究","volume":"27","year":"2006"},{"abstractinfo":"对于某一固定的燃气轮机冷热电联系统,建立联系统分析模型,确定系统冷电比,即用户负荷的最佳冷电比.当各系数值不变,燃气轮机装机容量不影响系统冷电比,而燃气轮机发电效率越大,联系统性能越好.对于实际用户负荷,分析冷热电联系统“以电定冷”和“以冷定电”两种运行方式,当以“以电定冷”运行方式,带电压缩式制冷联系统性能优于带补燃联系统性能.当冷电比小于最佳冷电比时,冷热电联系统采用“以电定冷”运行方式,当冷电比大于最佳冷电比时,冷热电联系统采用“以冷定电”方式.","authors":[{"authorName":"蒋润花","id":"e646bb15-679f-452c-9cb7-70ffff757f64","originalAuthorName":"蒋润花"},{"authorName":"杨晓西","id":"ff0effbb-3d64-4fb9-87c5-f07e8f34f6df","originalAuthorName":"杨晓西"},{"authorName":"杨敏林","id":"ff9f8ff7-bfb3-421d-95c3-298ba3dd07c3","originalAuthorName":"杨敏林"},{"authorName":"秦贯丰","id":"e8a3f269-f9c0-4897-a42e-2f4bf149a5d6","originalAuthorName":"秦贯丰"},{"authorName":"杨小平","id":"873584a2-2976-407f-aa11-63e95086ed1b","originalAuthorName":"杨小平"}],"doi":"","fpage":"1818","id":"79d4a8c0-da89-4ea9-88df-5af494cff978","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d400b6fa-dc95-4581-a2a6-502be8854144","keyword":"冷热电联系统","originalKeyword":"冷热电联供系统"},{"id":"40ec5d4b-9d4c-4236-93a7-44076be9e507","keyword":"以电定冷","originalKeyword":"以电定冷"},{"id":"59890a5f-7dac-4921-937a-78f5b57515dd","keyword":"以冷定电","originalKeyword":"以冷定电"},{"id":"095b0daa-4167-4dd9-8664-8b9ca66a833f","keyword":"电压缩式制冷","originalKeyword":"电压缩式制冷"},{"id":"5cd39cc0-5ba0-424d-bf3e-a1e379275e1b","keyword":"补燃","originalKeyword":"补燃"}],"language":"zh","publisherId":"gcrwlxb201310006","title":"冷热电联系统运行方式性能优化分析","volume":"34","year":"2013"},{"abstractinfo":"提出了一个燃气机热泵的热电冷三联系统,并介绍其组成.为分析燃用不同气体燃料的系统热力学完善程度,提出了标准气耗的概念.对热电冷三联系统的分析结果表明,该系统的一次能源利用率可达1.49,比热电冷分高-倍,标准气耗则降低一半左右.\n","authors":[{"authorName":"谢英柏","id":"c1d4db3c-83b9-46c1-ab01-1ad44b7c4808","originalAuthorName":"谢英柏"},{"authorName":"马一太","id":"c82605f7-aad6-4d44-a4c4-9e303e96d305","originalAuthorName":"马一太"},{"authorName":"杨昭","id":"cc9b7f1b-4a7f-48f4-8204-b3a7e357a315","originalAuthorName":"杨昭"},{"authorName":"苏维诚","id":"75d9a2a4-7d70-48ce-bb5c-c580803f5f2e","originalAuthorName":"苏维诚"}],"doi":"","fpage":"283","id":"8408efd6-1fcd-4207-a358-eb11fc0a60da","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"5a0ec128-620a-438e-a0d6-e520db8bd52b","keyword":"燃气机热泵","originalKeyword":"燃气机热泵"},{"id":"d3c65b9d-dab7-44f0-9b10-0b32f9dd657c","keyword":"热电冷三联","originalKeyword":"热电冷三联供"},{"id":"6e1f90cc-3293-493b-9ed8-e1854d881fd5","keyword":"标准气耗","originalKeyword":"标准气耗"}],"language":"zh","publisherId":"gcrwlxb200203006","title":"燃气机热泵的热电冷三联系统分析","volume":"23","year":"2002"},{"abstractinfo":"简要介绍了微型冷热电联系统的结构与功能,这种系统采用小型燃气内燃机和新型高效固体吸附式制冷机组集成实现冷热电联.具有效率高,污染排放低,占地面积小,初投资少等特点,可用于家庭、宾馆及会议场所等实现冷热电联.搭建了微型冷热电联系统性能测试试验台,并进行了系统性能试验研究,该系统可以实现额定发电量12 kW,最大供热量28.1 kW(95℃热水)和最大制冷量9 kW的目标,为下一步联系统能量管理和优化运行控制奠定基础,所形成的能量管理方案可以应用到任何大型冷热电联系统中.","authors":[{"authorName":"孔祥强","id":"4edaae81-68ac-4978-8400-014f0459a943","originalAuthorName":"孔祥强"},{"authorName":"王如竹","id":"f7de1139-bebe-44ba-9e49-babd8f68229c","originalAuthorName":"王如竹"},{"authorName":"吴静怡","id":"91b82bad-ec41-4104-90a6-c9c694f01a8b","originalAuthorName":"吴静怡"},{"authorName":"黄兴华","id":"cfe27346-9e78-4204-a738-2738807b3d18","originalAuthorName":"黄兴华"}],"doi":"","fpage":"21","id":"8af8bd76-3607-4bbe-b71e-b3a61ab99689","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"984add40-d0af-4b0d-b4c5-59b5cde0f106","keyword":"冷热电联","originalKeyword":"冷热电联供"},{"id":"0ed514ad-83fd-4460-bbb8-979e04ab7656","keyword":"燃气内燃机","originalKeyword":"燃气内燃机"},{"id":"05a640c7-4f47-4069-a55f-61107a1f97e7","keyword":"固体吸附制冷","originalKeyword":"固体吸附制冷"}],"language":"zh","publisherId":"gcrwlxb2005z1006","title":"微型冷热电联系统集成与实验研究","volume":"26","year":"2005"},{"abstractinfo":"介绍了集中系统,并通过了实际生产运行的检验,从而为工程机械涂装线的技术改造提供了一定的借鉴.","authors":[{"authorName":"潘迎江","id":"6c1f2d54-34bd-4df0-933a-fdc240f71f8e","originalAuthorName":"潘迎江"}],"doi":"10.3969/j.issn.0253-4312.2005.03.010","fpage":"32","id":"f882aece-0b53-4a65-816c-f68e351ad1ca","issue":"3","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"a8bba7f8-0199-4e70-9705-2e63c348af43","keyword":"集中系统","originalKeyword":"集中供漆系统"},{"id":"cd760af7-308c-42ac-92f5-5fdf15278652","keyword":"两线循环","originalKeyword":"两线循环"},{"id":"c26728f0-1f0a-4e55-9a8a-9631ccaeb791","keyword":"静电喷涂","originalKeyword":"静电喷涂"},{"id":"a1268acf-d5c4-471a-bb74-7283deeae8cf","keyword":"枪站","originalKeyword":"枪站"},{"id":"5e24b0a8-2ae8-404f-b9fa-35fc0950bd50","keyword":"模组","originalKeyword":"模组"}],"language":"zh","publisherId":"tlgy200503010","title":"工程机械涂装生产线集中系统","volume":"35","year":"2005"}],"totalpage":6413,"totalrecord":64127}