{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":1,"startPagecode":1},"records":[{"abstractinfo":"","authors":[{"authorName":"Huan He","id":"b8ec3839-84e3-4aa9-972d-56275bb5d03f","originalAuthorName":"Huan He"},{"authorName":"Chunli Yang","id":"aa823478-05b4-4a75-81d5-8b39898f388b","originalAuthorName":"Chunli Yang"},{"authorName":"Zhe Chen","id":"bdabffb6-bb49-45c8-b264-c070a1d3aa16","originalAuthorName":"Zhe Chen"},{"authorName":"Sanbao Lin","id":"5ba061b5-f27d-451f-a088-882372901c62","originalAuthorName":"Sanbao Lin"},{"authorName":"Chenglei Fan","id":"668f2142-cce3-4774-be5f-687e3e478b40","originalAuthorName":"Chenglei Fan"}],"doi":"10.1007/s40195-014-0115-6","fpage":"1012","id":"b03d3c52-5258-46cc-9069-0262c6c178e6","issue":"6","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"26d8b8fd-a9bf-439f-baeb-c45184fbb559","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jsxb-e201406006","title":"Strength Prediction of Aluminum-Stainless Steel-Pulsed TIG Welding-Brazing Joints with RSM and ANN","volume":"27","year":"2014"},{"abstractinfo":"LiNi0.8Co0.2O2是锂离子电池界公认的最有希望取代商业化正极材料LiCoO2的新型正极材料之一.本文所研究的复合正极材料LiNi0.8Co0.2O2是由细小的晶粒构成的球形颗粒,单一相,属于R3m空间群.对复合材料LiNi0.8Co0.2O2的Co-K和Ni-K的XANES分析可知,在600~850℃范围温度对于钴元素的影响不明显,而对于镍元素的影响比较显著,随着Ni-K边位置向高能量移动LiNi0.8Co0.2O2正极材料的放电容量升高.复合材料LiNi0.8Co0.2O2和LiNiO2的Ni-K边XANES相似,表明少量钴的引入对晶体结构的改变不是太多,但是峰的强度较高和峰的位置向高能量移动,表明钴Co对Ni的局域结构进行了调制.","authors":[{"authorName":"刘欣艳","id":"65247ef8-5d91-414f-bfe5-780772375de9","originalAuthorName":"刘欣艳"},{"authorName":"赵煜娟","id":"d03a117d-5114-4ab2-ad99-472ed7da9881","originalAuthorName":"赵煜娟"},{"authorName":"夏定国","id":"b7b2d15c-31c0-4ab0-acc6-74c67e0215b3","originalAuthorName":"夏定国"}],"doi":"","fpage":"1839","id":"112ec50d-ab43-4c5c-8bcd-e9e577c503eb","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1e47e964-4579-4aec-be48-0620385b5f1d","keyword":"LiNi0.8Co0.2O2","originalKeyword":"LiNi0.8Co0.2O2"},{"id":"e6c9a05c-b221-4a2b-ae81-62e481e77167","keyword":"XANES","originalKeyword":"XANES"},{"id":"0bfd7707-ce80-47b0-b492-64d591272bfe","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"61805825-78d1-441f-b4b0-562deef8c498","keyword":"局域结构","originalKeyword":"局域结构"}],"language":"zh","publisherId":"gncl2004z1512","title":"表面包覆法合成的LiN0.8Co0.2O2材料的结构表征","volume":"35","year":"2004"},{"abstractinfo":"采用Schlenk技术,在干燥纯氩气保护下,用无水三氯化稀土LnCl3与2-苯基茚以1∶2的摩尔比在THF中反应,得到8种新配合物:(2-ph-Ind)2LnCl (A)[Ln=La(1), Pr(2), Nd(3), Sm(4), Gd(5), Dy(6), Yb(7), Y(8)].再用(A)和LiN(TMS)2在THF中反应,得到两种新的二(2-苯基茚)稀土有机配合物:(2-ph-Ind)2LnN(TMS)2 (B)[Ln=Y(1), Sm(2)].所有配合物都经元素分析、红外和质谱鉴定.配合物(B)在甲基丙烯酸甲酯(MMA)的聚合反应中显示出一定的活性.","authors":[{"authorName":"吴运军","id":"ea6a52f8-92c3-4f95-8f92-f719a0a93ac2","originalAuthorName":"吴运军"},{"authorName":"张武","id":"af828294-cc48-49b7-bc42-baecfc3a5c50","originalAuthorName":"张武"},{"authorName":"马怀柱","id":"81d5bdab-ebb9-41c2-b249-f954bc228ebc","originalAuthorName":"马怀柱"}],"doi":"10.3969/j.issn.1004-0277.2003.06.004","fpage":"12","id":"7e93c7ca-b954-4ea7-a73f-7cd48ab32641","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"e2a4b90a-89c0-408a-981b-0acf2955d412","keyword":"稀土合成","originalKeyword":"稀土合成"},{"id":"de9ab547-2254-43de-8bf5-1465ea774350","keyword":"配合物","originalKeyword":"配合物"},{"id":"c4553844-348c-4c20-8f54-2d843fba9196","keyword":"聚合","originalKeyword":"聚合"},{"id":"96c4caa4-1c61-4425-a84d-60591310bf58","keyword":"2-苯基茚","originalKeyword":"2-苯基茚"}],"language":"zh","publisherId":"xitu200306004","title":"含取代茚基配体稀土金属有机化合物的合成、表征及催化性能","volume":"24","year":"2003"},{"abstractinfo":"利用溶胶-凝胶预处理固相方法合成了锂离子电池正极材料LiM0.9Ti0.1O2(M=Ni,Co),通过XRD对合成的材料进行结构分析,并将其组装成电池进行了电化学测试,对两种材料LiN0.9Ti0.1和LiCo0.9Ti0.1进行了比较.结果发现,LiCo0.9Ti0.1O2的结构和性能要好于LiNi0.9Ti0.1O2,根据实验结果对其原因进行了初步的分析.","authors":[{"authorName":"贺慧","id":"2c7cd80c-6261-4897-807f-0dcf4bad04cf","originalAuthorName":"贺慧"},{"authorName":"程璇","id":"6ae89d6c-863f-40c6-b179-377256fa9d79","originalAuthorName":"程璇"},{"authorName":"张颖","id":"ff2bb1a8-a926-469b-8181-c4ffdb8ef956","originalAuthorName":"张颖"},{"authorName":"杨勇","id":"3da44afd-4da1-41cf-9cd8-fb349d69addd","originalAuthorName":"杨勇"}],"doi":"","fpage":"1795","id":"ddb90df7-548e-4efc-b647-e0bd1f37d6fa","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a095ac3d-f85f-4562-b9a4-ae7869153677","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"f1906480-a149-4f0b-abf0-e1a4b3b33b2c","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"3ed363f1-09e1-4b5c-831d-4010e329cc01","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"gncl2004z1500","title":"正极材料LiM0.9Ti0.1O2(M=Ni,Co)的合成及表征","volume":"35","year":"2004"},{"abstractinfo":"利用低共熔组成的0.38LiOH \" H20-0.62LiN03混合锂盐体系与共沉淀合成的前躯体Ni1/3Co1/3Al1/3 (OH)2简单混合,经三阶段温度烧结制备出锂离子电池正极材料LiNi1/3 CO1/3 A11/3 O2,该法工艺简单,成本低,无需研磨即可以使物料在低共熔点温度上达到均匀混合的目的.经X粉末射线衍射(XRD)分析表明,合成的LiNili 1/3 CO1/3 Al1/3 O2具有典型的a-NaFeO2六方层状结构,其特征衍射峰I(003) /I(104)的峰强比值高达1.73.电性能测试表明,在5 5 0C,电压范围为2.8-4.3V,充放电倍率为0.2C的条件下,首次充放电比容量为156.4mAh/g,30次循环后容量保持率为94.1%,l和2C倍率放电容童仍可达到143.2和127.9mAh/g,其电性能均优于常温下的性能.","authors":[{"authorName":"常照荣","id":"65b0c5af-51d5-4c1f-87ff-4c8c194cabe5","originalAuthorName":"常照荣"},{"authorName":"郁旭","id":"296449f8-e844-43b4-918a-232cbba716a9","originalAuthorName":"郁旭"},{"authorName":"汤宏伟","id":"72b3d135-2736-4088-aaec-f9c894bb1146","originalAuthorName":"汤宏伟"},{"authorName":"王超楠","id":"a4096f21-e1d7-4897-ad01-6f551de48276","originalAuthorName":"王超楠"},{"authorName":"魏文强","id":"f7375214-5126-46f5-b5b7-fe04f09a76a9","originalAuthorName":"魏文强"}],"doi":"","fpage":"463","id":"7c45fdc0-4369-4988-8fb1-70b80a50fe9f","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6319650b-4c34-4d1d-8d25-41bc7d2e3f76","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"c10473ef-f3e9-4e0f-8b49-54afb0b6ea6d","keyword":"低共熔盐","originalKeyword":"低共熔盐"},{"id":"e4f10494-0560-42a8-b1a2-7b453ca6a9c7","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"f9831e9d-0535-4bd9-845c-056401ab5283","keyword":"LiNi1/3CO1/3Al1/3O2","originalKeyword":"LiNi1/3CO1/3Al1/3O2"}],"language":"zh","publisherId":"gncl201103022","title":"LiOH-LiNO3低共熔混合锂盐体系合成LiNi1/3CO1/3Al1/3O2","volume":"42","year":"2011"},{"abstractinfo":"近年来,分析工作者采用超高效液相色谱( UPLC)完成了许多过去不能完成的分离分析工作。但是在阐述UPLC原理时不少人却采用了 van Deemter方程。这是不对的。本文研究了 UPLC 色谱过程动力学,从热传导方程出发运用色谱动力学原理推导了包括考虑流动相摩擦生热影响的 UPLC 塔板高度方程 H =2γD m/u+2λdpu1/3u1/3+ω(Dm/dp)1/3+2ku(1+k)2(1+κ0)kd +30θ(κ0+κ0k+k)2d2puDmκ0(1+κ0)2(1+k)2+κi(κ0+κ0k+k)2d5/3p u2/33κ0ΩD2/3m(1+κ0)2(1+k)2+ r20(κ0+κ0k+k)u4(1+k)Dr · exp(-Kr20α)。上述方程右端最后一项代表了流动相摩擦生热对塔板高度的贡献。当流动相线速度较低时,流动相摩擦生热对塔板高度的贡献趋近于零,塔板高度方程还原成 Horvath 和 Lin 的方程;当流动相线速度较高时,由于流动相摩擦生热,柱轴心与边缘温差增加,流动相线速度径向分布差异导致柱效率降低,而柱轴心与边缘的温差与流动相线速度平方成正比。作者明确指出:UPLC 的柱效率与柱内径密切相关,采用细内径柱有利于实现高效率;过高的流动相线速度将导致柱效率崩溃。","authors":[{"authorName":"戴朝政","id":"713d4269-8899-4f68-8494-2a15e1f71557","originalAuthorName":"戴朝政"}],"doi":"10.3724/SP.J.1123.2014.10007","fpage":"535","id":"d129cc7a-be40-4e77-8cb4-d50b28d96f25","issue":"5","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"5dc9d4f4-da77-4566-a92e-9854342af598","keyword":"超高效液相色谱","originalKeyword":"超高效液相色谱"},{"id":"32b0c16e-9f9e-4ea0-bebd-8c6aa470f8d0","keyword":"色谱过程动力学","originalKeyword":"色谱过程动力学"},{"id":"7fc68d67-e748-497b-aa14-81b991595367","keyword":"柱效率崩溃","originalKeyword":"柱效率崩溃"},{"id":"d09a2ce2-3649-4a52-88c9-5a8af787bc3b","keyword":"塔板高度方程","originalKeyword":"塔板高度方程"}],"language":"zh","publisherId":"sp201505015","title":"超高效液相色谱塔板高度方程的推导","volume":"","year":"2015"},{"abstractinfo":"采用氢氧化物共沉淀法合成LiNi0.Co0.1 Mno1O2正极材料,对产物进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学性能分析,结果表明,LiNi0.Co0.1Mn0.1O2在0.5C下的循环性能和倍率性能较差,100次循环后,Li+的嵌入/脱嵌的界面阻抗(Rf)和电荷转移阻抗(Rct)迅速增加,极化增大.为改善其电化学性能,以尿素为沉淀剂,采用均匀沉淀法,在LiNi0.Co0.1 Mn01O2表面包覆不同比例Al2O3包覆层,研究其对LiNi0.-Co0.1Mn01O2电化学性能的影响.在所有的样品中,1% Al2O3包覆LiNi0.8 Co01Mn01O2具有最优的六方晶型α-NaFeO2层状结构和最低的阳离子混排度.SEM和TEM图表明无定形透明多孔Al2O3包覆层均匀地包覆在LiN0.8Co0.1 Mn0.1O2表面.与纯相相比,1%Al2O3包覆LiNi08Co0.1Mn01O2具有较好的电化学性能,包括相对较高的首次放电容量189.56 mAh·g-1、最高的首次库伦效率87.95%、较好的循环性能和倍率性能.循环伏安(CV)和电化学阻抗(EIS)结果表明,LiNi0.8Co01Mn0.1O2电化学性能得到提高是由于Al2O3包覆层可以抑制电解液与正极副反应的发生,从而减小循环过程中界面阻抗值和电荷转移阻抗值的增大.","authors":[{"authorName":"陈道明","id":"26551228-2154-4c6e-a5bd-be5ca7174f88","originalAuthorName":"陈道明"},{"authorName":"李媛媛","id":"4e003450-fdd0-4e13-9cd5-0fcc03666eb6","originalAuthorName":"李媛媛"},{"authorName":"吴益鑫","id":"c01e41f3-c99a-4b9e-a574-796546f8763e","originalAuthorName":"吴益鑫"},{"authorName":"张大伟","id":"ac5f0160-c834-4c7e-a920-19223a3770a9","originalAuthorName":"张大伟"}],"doi":"10.11896/j.issn.1005-023X.2016.08.002","fpage":"6","id":"14a3c923-faa2-49fc-ac9d-a9eacdd386b4","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"333fe0ce-bd37-42e8-a79a-e6edc7ebca00","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"4c72c426-d2b8-4f72-af39-ded934fda84b","keyword":"氢氧化物共沉淀","originalKeyword":"氢氧化物共沉淀"},{"id":"5068b183-f925-41a0-9aa1-59379a46d6a1","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"62080341-ee76-4e45-a21d-098a709c1c7e","keyword":"LiNi0.8Co0.1Mn0.1O2","originalKeyword":"LiNi0.8Co0.1Mn0.1O2"},{"id":"2fd6b85c-083f-4976-9cc5-8059d093d325","keyword":"包覆","originalKeyword":"包覆"},{"id":"3a9930ff-7816-4494-a66a-03c6f9d7bca4","keyword":"正极材料","originalKeyword":"正极材料"}],"language":"zh","publisherId":"cldb201608002","title":"Al2O3包覆锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的改性研究","volume":"30","year":"2016"},{"abstractinfo":"由于化石燃料的不可持续性,以及燃烧化石燃料释放的大量CO2产生的温室效应、环境污染等严重的全球性问题,构建洁净的、环境友好的、非化石燃料的可再生新能源体系成为世界各国高度关注的焦点和重大战略部署.在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展.从实用性角度出发,利用人工光合作用直接将光能转化为化学能吸引了国内外许多研究小组的兴趣.太阳能裂解水制氢是解决能源危机的最理想途径之一.然而,水的氧化涉及到4电子和4质子的转移过程,是能量爬坡的艰难过程.所以,水的氧化是制约水裂解的一个瓶颈.寻找高效、稳定、廉价的水氧化催化剂成为水裂解的重中之重.然而,廉价、制备方法简单、效率高、容易回收的水氧化催化剂仍不多.已有文献报道了一些含Co,Fe,Mn和Ni的光催化水氧化催化剂.值的一提的是,Cu作为地球上第八位丰产元素,由于它合适的氧化还原性质和可调控的配位环境,理论上应该是一个高效的水氧化催化剂.然而,Cu很少被用作水氧化催化剂.2012年,Mayer等报道了第一例含铜的均相电催化水氧化催化剂.2013年,Meyer等报道了非常高效和稳定的简单CuⅡ盐电催化水氧化催化剂.2014年,Lin等报道了一个碱性的水溶液中混合Cu(Ⅱ)盐和6,6-dihydroxy-2,2-bipyri-dine(H2L)的高效电催化水氧化催化剂体系.2015年,Sun等在近中性的硼酸缓冲溶液中采用简便的电沉积Cu2+制备了一个高效的铜氧化物电催化水氧化催化剂.然而,基于地球上充足的Cu设计高效、容易制备和稳定的光催化水氧化催化剂,仍是一个巨大的挑战.本文基于地球丰产元素Cu和O,成功合成了花状的三维CuO微球,并采用扫描电镜、透射电镜、红外光谱、X射线粉末衍射、拉曼光谱、X射线光电子能谱、N2吸附脱附等温线对CuO样品的物相、元素组成、颗粒大小以及比表面积等进行了表征.在可见光下,以[Ru(bpy)3]2+为光敏剂,Na2S2O8为牺牲电子受体,首次报道了CuO微球用作水氧化催化剂.通过一系列控制实验证明CuO确实参与了催化过程.据我们所知,这是第一例铜物种在近中性条件下被证明具有光催化水氧化催化性能.通过对缓冲溶液、pH值和催化剂浓度的优化,在硼酸缓冲溶液(pH=8.5)中产生的O2收率为11.5%,CuO显示了最佳的催化活性.进一步研究表明,CuO表现出卓越的水氧化催化性能和稳定性.催化剂重复使用5次后活性基本保持不变.反应前后的催化剂组成和形貌基本没有发生改变,其表面性质也未发生明显变化.18O标记的重氧水实验证明,氧气中的氧确实是来自于水.实验发现,催化剂活性主要取决于其比表面积.结合已报道的文献,我们初步提出了一个光催化水氧化反应机理.相对于钴、镍和钒,铜丰度高,价格更低,具有更好的发展潜力.可见,丰度高、低毒性和合适的氧化还原性质使铜催化剂填补了光催化水分解的一项空白.","authors":[{"authorName":"杜晓强","id":"80c3f151-d841-4b3d-aa18-a72c54cc2254","originalAuthorName":"杜晓强"},{"authorName":"黄静伟","id":"8db3b79e-bce4-4bec-817d-be974d01d1bd","originalAuthorName":"黄静伟"},{"authorName":"丰营营","id":"62d78f98-eb26-4f61-913d-dfda704e3cc9","originalAuthorName":"丰营营"},{"authorName":"丁勇","id":"7a284b0a-8453-4508-ace4-fcbcd244d71e","originalAuthorName":"丁勇"}],"doi":"10.1016/S1872-2067(15)61012-9","fpage":"123","id":"c5aa6265-6169-415b-918c-4f8ec8a57607","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e3aa575f-8161-4878-8de7-e538a8e550dc","keyword":"光催化","originalKeyword":"光催化"},{"id":"e24c0194-fc5d-4c0f-841f-5e1001f5af08","keyword":"水氧化","originalKeyword":"水氧化"},{"id":"352da720-3586-424e-be0e-782478836cb2","keyword":"金属催化剂","originalKeyword":"金属催化剂"},{"id":"23b5f070-a03e-4fc9-b18c-cb15f8e6588a","keyword":"氧化铜微球","originalKeyword":"氧化铜微球"},{"id":"659ba307-9dd5-4347-bfaf-3ccedc705167","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"cuihuaxb201601014","title":"花状的三维CuO微球作为光催化水氧化催化剂","volume":"37","year":"2016"}],"totalpage":1,"totalrecord":8}