{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对2024铝合金板进行不同参数下搅拌摩擦焊接, 分析了焊缝表面组织, 检查了在EXCO溶液中焊缝表面的腐蚀行为, 并讨论硬度分布与腐蚀发生的关系. 结果表明, 焊后轴肩作用区晶粒细化明显. 随转速的增加, 焊缝上表面热影响区范围加宽、轴肩作用区硬度上升、耐蚀性能提高. 在转速1500 r/min、行进速度1000 mm/min下所得焊缝金属塑性流动剧烈, 轴肩作用区硬度值已接近母材的硬度值, 在EXCO溶液中浸泡10 h后仅发生点蚀. 与母材相比, 接头硬度的软化区是腐蚀发生的区域, 但硬度值最低的位置与腐蚀最严重的区域没有严格的对应关系.","authors":[{"authorName":"康举","id":"9b28cf4b-0423-497b-b5b5-b07049227d95","originalAuthorName":"康举"},{"authorName":"","id":"1fd8bea8-43d4-46a9-99c6-4d298b955f98","originalAuthorName":"梁苏莹"},{"authorName":"李光","id":"d26171a8-81dc-405d-8cfd-1824377ffdf5","originalAuthorName":"李光"},{"authorName":"栾国红","id":"2d23dba7-6fd0-49e8-9362-134d41ecadc0","originalAuthorName":"栾国红"},{"authorName":"董春林","id":"a481fb0c-b72e-49c9-8150-0c85a31301bc","originalAuthorName":"董春林"},{"authorName":"何淼","id":"0c70b4a8-7f73-4fc8-b0e4-5a6304c34af6","originalAuthorName":"何淼"},{"authorName":"付瑞东","id":"a14330a9-aaaf-46ee-bbc1-572aca49e7e0","originalAuthorName":"付瑞东"}],"categoryName":"|","doi":"","fpage":"51","id":"f0a2949f-8612-4339-af69-efab467c8f80","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"b29a0ab6-8386-4af4-a986-b6aa0b152c5a","keyword":"2024铝合金","originalKeyword":"2024铝合金"},{"id":"a544583c-5539-4a66-9631-48df6f1bad82","keyword":"friction stir welding; microstructure","originalKeyword":"friction stir welding; microstructure"},{"id":"7afa04aa-2eba-45c8-add8-3889e32d2079","keyword":"hardness","originalKeyword":"hardness"},{"id":"61eb654a-49e3-427f-97df-dbce5f2edc1c","keyword":"immersion test","originalKeyword":"immersion test"},{"id":"4a7f027c-49ab-47f0-ad50-8a7abcb9032f","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2012_1_11","title":"焊接参数对2024铝合金FSW接头组织及腐蚀行为的影响","volume":"24","year":"2012"},{"abstractinfo":"对2024铝合金板进行不同参数下搅拌摩擦焊接,分析了焊缝表面组织,检查了在EXCO溶液中焊缝表面的腐蚀行为,并讨论硬度分布与腐蚀发生的关系.结果表明,焊后轴肩作用区晶粒细化明显.随转速的增加,焊缝上表面热影响区范围加宽、轴肩作用区硬度上升、耐蚀性能提高.在转速1500r/min、行进速度1000mm/min下所得焊缝金属塑性流动剧烈,轴肩作用区硬度值已接近母材的硬度值,在EXCO溶液中浸泡10h后仅发生点蚀.与母材相比,接头硬度的软化区是腐蚀发生的区域,但硬度值最低的位置与腐蚀最严重的区域没有严格的对应关系.","authors":[{"authorName":"康举","id":"d5999e60-5534-4e91-a58a-a4a740cc510a","originalAuthorName":"康举"},{"authorName":"","id":"400d0bdb-a3ae-4a1f-a0af-5266d463972c","originalAuthorName":"梁苏莹"},{"authorName":"李光","id":"6ed2a106-240a-4f36-afd3-40f19d22af4b","originalAuthorName":"李光"},{"authorName":"栾国红","id":"c32aa716-a03d-4101-bed1-7da39a0a7098","originalAuthorName":"栾国红"},{"authorName":"董春林","id":"159584d2-8a7d-4f4d-8793-93c2656aa711","originalAuthorName":"董春林"},{"authorName":"何淼","id":"34b374d9-170a-45d7-9e3a-04f722f10121","originalAuthorName":"何淼"},{"authorName":"付瑞东","id":"fe5b2ac6-3b1b-40dd-ab17-4a8edb3df8c3","originalAuthorName":"付瑞东"}],"doi":"","fpage":"51","id":"333f763a-d63a-4c8a-86bb-d4df1b0eae3b","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"b5d6c8e5-03ce-43db-97c4-3773fd5fedbc","keyword":"2024铝合金","originalKeyword":"2024铝合金"},{"id":"d38eb769-d262-45bf-b455-e77a93d11d20","keyword":"搅拌摩擦焊","originalKeyword":"搅拌摩擦焊"},{"id":"01aee5d0-1c84-44f3-9884-cd2c4e58cac4","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"8aff4ffd-7e89-48b2-bb21-d53d452d4692","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"ed48d111-3966-4c21-ac3f-fa33e97f1c8b","keyword":"浸泡试验","originalKeyword":"浸泡试验"}],"language":"zh","publisherId":"fskxyfhjs201201011","title":"焊接参数对2024铝合金FSW接头组织及腐蚀行为的影响","volume":"24","year":"2012"},{"abstractinfo":"

在2219-T8铝合金搅拌摩擦焊(FSW)接头焊核区(NZ)发现了局部液化现象。采用热处理和热模拟2种方法对比分析了局部液化区组织的特点,采用显微硬度计和原位拉伸实验研究了局部液化对接头力学性能的影响。结果表明,局部液化是由NZ中的Al2Cu相与周围基体的共晶反应,即发生了组分液化所致。液化区为液相+α(Al)相的半固态组织,冷却时高熔点组元α(Al)相先析出,同时在搅拌挤压和材料流动的作用下发生固液分离,形成离异共晶。液化区的硬度低于NZ正常区域,是NZ微区试样断裂的起源,降低了NZ的抗拉强度和延伸率。不过,由于液化区域是局部的、极少量的存在于NZ中,其对接头拉伸性能的影响远小于整体均发生弱化的热机械影响(TMAZ)的影响。

","authors":[{"authorName":"康举","id":"9292ffee-e5c1-4293-b062-76c718c1215d","originalAuthorName":"康举"},{"authorName":"","id":"44ff8a0f-1b9e-4a02-97cb-4676aa98cd88","originalAuthorName":"梁苏莹"},{"authorName":"吴爱萍","id":"5ab1c9dc-aa4a-44de-b02c-9de656f2b021","originalAuthorName":"吴爱萍"},{"authorName":"李权","id":"ca9509fd-fdaa-40f1-9909-48d158a7e4fa","originalAuthorName":"李权"},{"authorName":"王国庆","id":"5f51bfdb-0b91-4f0e-8984-169bd2563cb4","originalAuthorName":"王国庆"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00311","fpage":"358","id":"cec38892-c61e-4d9e-9c77-24636233e2bb","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"96cba0e2-b32b-48fb-86a8-fab309b4822c","keyword":"2219-T8铝合金","originalKeyword":"2219-T8铝合金"},{"id":"bdd3a351-f2eb-4ab8-9be9-95a7d248966f","keyword":"搅拌摩擦焊","originalKeyword":"搅拌摩擦焊"},{"id":"5e10068c-f312-4a80-81d6-d5d039cdc0c7","keyword":"局部液化","originalKeyword":"局部液化"},{"id":"daab1918-1292-44d2-955e-60cf183a7db9","keyword":"原位拉伸","originalKeyword":"原位拉伸"},{"id":"fde771ad-d473-4ddf-b938-6f45716961e0","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"C20160311","title":"2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响","volume":"53","year":"2017"},{"abstractinfo":"采用微型电池(Microcell)和浸泡腐蚀试验研究了2219-O铝合金搅拌摩擦焊接接头在0.5 mol/L NaCl中性溶液中的微区电化学特征和腐蚀行为,通过光学轮廓仪分析了经14 d浸泡后接头的均匀腐蚀深度以及点蚀形貌、深度和密度,讨论了影响腐蚀行为的机理.结果表明:接头在无外电流干扰下即发生点蚀.与母材相比,热影响区的腐蚀行为没有明显改变;热机械影响区的耐蚀性略有提高;轴肩作用区(SAZ)因θ相回溶和被打碎,提高了基体中固溶的Cu含量,降低了SAZ的腐蚀速率以及点蚀深度、体积和密度,耐蚀性提高.","authors":[{"authorName":"","id":"91fd8042-7ade-4e98-bc93-6fa981965ff3","originalAuthorName":"梁苏莹"}],"doi":"10.11973/fsyfh-201703011","fpage":"208","id":"cc575ff2-6992-40f6-b2a4-628fe4eb850a","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"e833089d-cc86-42d0-83ff-d63261d1b56d","keyword":"2219铝合金","originalKeyword":"2219铝合金"},{"id":"a19aa684-9bf9-4fcb-bc13-a64389867768","keyword":"搅拌摩擦焊","originalKeyword":"搅拌摩擦焊"},{"id":"8a97a2c7-348b-4dd1-821e-e8ba1816b29c","keyword":"中性NaCl溶液","originalKeyword":"中性NaCl溶液"},{"id":"310db824-b8b0-4046-a042-aab58c548471","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"3e0d659e-f9cc-4e0b-8147-1ea421a49ed8","keyword":"微区电化学特性","originalKeyword":"微区电化学特性"}],"language":"zh","publisherId":"fsyfh201703011","title":"2219铝合金搅拌摩擦焊接接头在中性介质中的腐蚀行为","volume":"38","year":"2017"},{"abstractinfo":"以TiN,Ti和Al粉末为原料,按1:1:1.03的配比,经机械球磨混合后,采用热压烧结的方法制备Ti2AlN块体陶瓷材料.采用X射线衍射(XRD)、场发射扫描电镜(SEM)和透射电镜(TEM)等手段,分析烧结产物的相组成和微观结构特征.研究表明:在烧结温度为1300 ℃、保温2.5 h下,可获得物相比较单一的Ti2AlN陶瓷材料,所得Ti2AlN为六方晶系层片状结构,组织呈现出各向异性,晶体中存在孪晶;烧结产物中残存少量的纳米级TiN颗粒.","authors":[{"authorName":"","id":"f3b83357-fabd-4362-843f-b44702a5f7c6","originalAuthorName":"梁苏莹"},{"authorName":"康举","id":"fdd5d45a-2fa0-4a39-8154-dcdf1541dbfa","originalAuthorName":"康举"},{"authorName":"赵霞","id":"345aff51-e3e1-4d4e-be1e-92ecdacf80aa","originalAuthorName":"赵霞"},{"authorName":"战再吉","id":"d39efe11-f144-4e32-a741-62302166101b","originalAuthorName":"战再吉"}],"doi":"10.11868/j.issn.1005-5053.2016.000167","fpage":"73","id":"5b676f3c-1d42-41cc-944b-92958e7b35ee","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"0662f6ef-c200-48c1-a853-c3e6b1f5b877","keyword":"Ti2AlN","originalKeyword":"Ti2AlN"},{"id":"ec702f5d-cb9c-49ea-a57d-4e073c49606f","keyword":"热压烧结","originalKeyword":"热压烧结"},{"id":"320807c7-4e49-420c-bd20-6908743bf0ec","keyword":"金属陶瓷","originalKeyword":"金属陶瓷"},{"id":"a7f1f064-2a84-44b7-be93-ccf6849bebcb","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"hkclxb201703012","title":"热压烧结Ti2AlN金属陶瓷材料的物相及显微结构","volume":"37","year":"2017"},{"abstractinfo":"钢4号高炉运用现代化管理方法,全面贯彻高炉安全、稳定、顺行、均衡、长寿、高产、优质、低耗的工作方针和操作方针及有关长寿技术措施,炉龄达10年10个月,产铁8 385 t/m3,创全国小高炉长寿高效先进水平.","authors":[{"authorName":"孙廉洁","id":"af677360-e9d3-4318-8b93-ebb85e2d1778","originalAuthorName":"孙廉洁"}],"doi":"","fpage":"9","id":"1fd7501b-b893-4f48-94b6-1e660af95d49","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"efac719a-18cd-4612-90ae-306b1ca1949c","keyword":"高炉","originalKeyword":"高炉"},{"id":"74e10e82-2f5a-40fb-bb93-ebca1035ba47","keyword":"长寿","originalKeyword":"长寿"},{"id":"6dff3854-c4c0-4b31-9ca1-3009d54459d5","keyword":"管理","originalKeyword":"管理"},{"id":"f14330f0-9df2-4629-b6ae-d7ca243b60eb","keyword":"操作","originalKeyword":"操作"}],"language":"zh","publisherId":"gt199811003","title":"钢4号高炉的长寿实践","volume":"33","year":"1998"},{"abstractinfo":"采用气相色谱-质谱联用对冠心合丸及药材中的挥发性成分进行了分析.采用选择离子监测法,以水杨酸甲酯为内标,对冠心合丸中的两个指标成分冰片和苯甲酸苄酯进行了定量测定.冰片和苯甲酸苄酯的平均加标回收率分别为91.7%和89.7%,RSD分别为5.6%和2.3%.","authors":[{"authorName":"孙秀燕","id":"737e65eb-fad8-4b91-9ae8-69d3f3e19187","originalAuthorName":"孙秀燕"},{"authorName":"吴建兵","id":"ea0918d9-8a52-460a-85eb-0c0fdf3276ff","originalAuthorName":"吴建兵"},{"authorName":"王素娟","id":"54790346-f072-4b24-95c2-f74b198e70a6","originalAuthorName":"王素娟"}],"doi":"10.3321/j.issn:1000-8713.2002.04.025","fpage":"378","id":"e7e6630d-ff00-4857-97c6-f6d6a3dbff7e","issue":"4","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"84da69f1-04d8-4efe-8a80-e96d17bf0957","keyword":"气相色谱-质谱","originalKeyword":"气相色谱-质谱"},{"id":"0e884b2e-8888-4442-96e6-0c7589c82af7","keyword":"挥发性组分","originalKeyword":"挥发性组分"},{"id":"3224a2f8-fdcb-4ee8-be66-6b4c54226330","keyword":"冰片","originalKeyword":"冰片"},{"id":"e1d06d5c-df6c-44fa-b699-a76071ffe9de","keyword":"苯甲酸苄酯","originalKeyword":"苯甲酸苄酯"},{"id":"e7e61cb8-e4bc-41df-b841-618c443c9d45","keyword":"冠心合丸","originalKeyword":"冠心苏合丸"}],"language":"zh","publisherId":"sp200204025","title":"气相色谱-质谱联用分析冠心合丸中的挥发性组分","volume":"20","year":"2002"},{"abstractinfo":"土壤的干湿变化直接影响到土壤中金属材料的腐蚀.为此,应用失重法研究了土壤湿度对Q235钢在里格大气田土壤中腐蚀行为的影响,结合电镜、能谱等手段对腐蚀产物进行表征,并对腐蚀机理进行了初步探讨.结果表明:土壤湿度对Q235钢的腐蚀影响很严重,在湿度为10%时,出现最大腐蚀速率.腐蚀形貌观察发现Q235钢点腐蚀倾向较为严重;钢的腐蚀产物主要是铁的氧化物(Fe2O3,Fe3O4).","authors":[{"authorName":"王晶","id":"55fe8b7b-f3bd-40d1-bbb0-03f68446bbe6","originalAuthorName":"王晶"},{"authorName":"宋义全","id":"8ee8e38a-fd34-4e5a-83f9-c9521df2ed70","originalAuthorName":"宋义全"},{"authorName":"冯佃臣","id":"b4a307b9-86ff-4568-8599-848a17e5c760","originalAuthorName":"冯佃臣"},{"authorName":"李涛","id":"484dffb6-9aa7-46be-ade9-c6e371f55462","originalAuthorName":"李涛"},{"authorName":"李晓刚","id":"26db254e-72e7-47d8-9640-22058f1e80c7","originalAuthorName":"李晓刚"}],"doi":"","fpage":"69","id":"0284bae2-e13c-40ec-bec4-0380ce506b5f","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"6c612e6e-cbdd-43b6-a1ae-26b92683ed0d","keyword":"土壤湿度","originalKeyword":"土壤湿度"},{"id":"99a24818-1f0e-4d40-8d92-fd94e0180a5d","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"a4e017c2-5eb0-42cd-8b4f-37e978ff1eb1","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"03485fd4-d80d-4eb6-bfd1-a221de8e3e7e","keyword":"点腐蚀","originalKeyword":"点腐蚀"},{"id":"9229a833-807d-4883-9125-540fc20a53c2","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"}],"language":"zh","publisherId":"clbh200902022","title":"里格大气田土壤湿度对Q235钢腐蚀行为的影响","volume":"42","year":"2009"},{"abstractinfo":"在新疆吉泉花岗岩所含团块状石墨中发现许多纳米级锥状矿物,经高分辨电镜能谱分析其化学成份为碳,电子衍射和高分辨分辨像分析表明其为纳米石墨锥.锥的顶角一般在15.5o~36.0o之间.在高分辨电镜观察基础上,讨论了纳米石墨锥的形成机制.根据三元长石温度计计算,纳米石墨锥的形成温度分别为480~950℃,压力为511~878MPa.","authors":[{"authorName":"冯有利","id":"e1d7eb97-d09f-4301-b9c6-d3c1ec79bd10","originalAuthorName":"冯有利"},{"authorName":"于立竟","id":"65e1178e-a02c-49fa-8f4e-c2825e8150e6","originalAuthorName":"于立竟"}],"doi":"10.3969/j.issn.1001-1625.2007.01.003","fpage":"9","id":"33fa1660-5743-4eb8-acce-9725883c51d2","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"8fbef0d0-074f-4546-99f0-0730042de398","keyword":"纳米石墨锥","originalKeyword":"纳米石墨锥"},{"id":"acfa7822-07cd-4a77-89e1-fe73fc7cfaf2","keyword":"高分辨电子显微镜(HRTEM)","originalKeyword":"高分辨电子显微镜(HRTEM)"},{"id":"9976341b-7aa0-4514-9b22-e3fcc555ae37","keyword":"形成机制","originalKeyword":"形成机制"}],"language":"zh","publisherId":"gsytb200701003","title":"新疆吉泉石墨矿床中的纳米石墨锥的结构表征","volume":"26","year":"2007"},{"abstractinfo":"卡特巴阿特大型金铜矿床位于新疆西天山那拉提北缘断裂的南侧,紧邻那拉提北缘断裂.对矿区构造地质特征进行了详细研究,对构造与成矿作用的关系进行了分析.研究结果表明,矿体主要分布于F5、F6断层之间的断层-破碎带节理构造系统中,显示出典型的构造控矿特征.通过对矿区构造与区域构造关系的探讨,认为矿区构造系统为与区域性那拉提北缘断裂的次级平行构造,因此该矿区构造体系为与区域性构造平行的一套断层破碎带-节理构造系统.","authors":[{"authorName":"李云涛","id":"66b6874a-0a90-4fce-8adc-5229c894b660","originalAuthorName":"李云涛"},{"authorName":"刘云华","id":"80caa4cb-4485-4c1d-a794-1040677feaee","originalAuthorName":"刘云华"},{"authorName":"李真","id":"fdabbf3c-6912-47d4-879a-189a326475b2","originalAuthorName":"李真"},{"authorName":"韩一筱","id":"a09b1979-0b41-4733-97f4-0ff41e4c8b5b","originalAuthorName":"韩一筱"},{"authorName":"李欢","id":"0e8ccf88-23ac-45f4-a8d2-308cfb643523","originalAuthorName":"李欢"},{"authorName":"周赛芳","id":"73cb0446-bf6c-4cb1-909e-9be3db249174","originalAuthorName":"周赛芳"}],"doi":"10.11792/hj20160403","fpage":"7","id":"85c1d814-4883-41f4-bd7a-71ff0c378af4","issue":"4","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"4950e61c-ed14-443e-8bc0-6eb1d50e8a50","keyword":"控矿构造","originalKeyword":"控矿构造"},{"id":"50a401b3-c03a-4a49-b68f-2c60d46fee42","keyword":"构造特征","originalKeyword":"构造特征"},{"id":"33472702-53b1-420d-9a43-dc22fd6a2d2a","keyword":"构造系统","originalKeyword":"构造系统"},{"id":"f9e61186-e017-4afe-87bf-4bdb5cc41596","keyword":"卡特巴阿金铜矿床","originalKeyword":"卡特巴阿苏金铜矿床"},{"id":"3e6f53cb-c5ef-4599-917c-91fc00bb65a5","keyword":"新疆西天山","originalKeyword":"新疆西天山"}],"language":"zh","publisherId":"huangj201604003","title":"新疆西天山卡特巴阿金铜矿区构造特征研究","volume":"37","year":"2016"}],"totalpage":80,"totalrecord":793}