{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了氮化温度、氮化时间、氮气压力和流量等因素对钛氮化反应的影响,确定了钛表面气体氮化的工艺参数, 并对氮化覆层的相组成及各项性能进行了研究.","authors":[{"authorName":"贾翎","id":"32f47cbb-6987-4517-9cba-29f4bb58c0e7","originalAuthorName":"贾翎"},{"authorName":"夏志华","id":"8ad71aa9-1fe8-4cfd-92a8-2fe95d0cf419","originalAuthorName":"夏志华"}],"doi":"10.3969/j.issn.0258-7076.1998.04.013","fpage":"295","id":"8d791c5a-dec9-417e-baa9-3a0f33c13218","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"089bffd0-b566-43e9-afad-3ed6fe1c335a","keyword":"钛","originalKeyword":"钛"},{"id":"79dba7cd-6671-4826-8c83-ec83984b6bd3","keyword":"表面氮化","originalKeyword":"表面氮化"},{"id":"d9f9e499-d5b3-4455-a864-5c4c0ede8dd6","keyword":"氮化钛","originalKeyword":"氮化钛"}],"language":"zh","publisherId":"xyjs199804013","title":"钛表面气体氮化的工艺研究","volume":"22","year":"1998"},{"abstractinfo":"利用激光共聚焦显微镜(CLSM)、扫描电子显微镜(SEM)和激光拉曼光谱(Raman Spectroscopy)等技术研究了氮化处理的贫铀表面在盐雾环境中的腐蚀行为.结果表明:盐雾环境对氮化处理的贫铀表面具有较强的腐蚀破坏作用;在含夹杂缺陷位置最先发生点蚀,随着在盐雾环境中暴露时间的延长,腐蚀加剧,氮化改性层被破坏,直接导致基体发生严重的腐蚀;盐雾环境中贫铀的腐蚀产物中含有U3 O8.","authors":[{"authorName":"陈晓龙","id":"1e61aa95-3dd8-46ae-9b5c-f6f5106c4169","originalAuthorName":"陈晓龙"},{"authorName":"蔡定洲","id":"b2c4e27a-bf56-4299-8252-1cda01c36875","originalAuthorName":"蔡定洲"},{"authorName":"龙重","id":"992abd26-9c8d-4922-a215-200b93ba5691","originalAuthorName":"龙重"},{"authorName":"胡殷","id":"da0c6474-0a8a-49ff-82ff-edc0efba66fb","originalAuthorName":"胡殷"},{"authorName":"陈志磊","id":"44e39d65-6997-4fa9-b379-7fb3b00ac7c4","originalAuthorName":"陈志磊"},{"authorName":"刘柯钊","id":"c8f89f15-3b69-4b7b-82d5-ed0bbf504fbd","originalAuthorName":"刘柯钊"}],"doi":"10.11973/fsyfh-201704011","fpage":"296","id":"b249ef8a-bb28-487d-b7ac-2e39783d2333","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"08cb67d2-8dd8-4881-ad13-d4e3c14b08e4","keyword":"贫铀","originalKeyword":"贫铀"},{"id":"63f013b7-cb3f-48ee-ac0f-a51e78531721","keyword":"表面氮化","originalKeyword":"表面氮化"},{"id":"f49a9010-bcc3-4845-99a1-cf47bb67f0dc","keyword":"盐雾腐蚀","originalKeyword":"盐雾腐蚀"},{"id":"2276d073-e4d6-4e9f-9a0d-71db853cc768","keyword":"腐蚀产物","originalKeyword":"腐蚀产物"}],"language":"zh","publisherId":"fsyfh201704011","title":"氮化处理的贫铀表面在盐雾环境中的腐蚀行为","volume":"38","year":"2017"},{"abstractinfo":"激光脉冲辐照置于氮气中的MO,使表面形成含γ-Mo2N的氮化层、激光使Mo表面熔化导致液相氮化反应用SEM.XRD和AUGER谱分析表征了氮化层.激光在表层引起的加热和激波效应还有使表层微观组织致密的作用","authors":[{"authorName":"吴嘉达","id":"21797406-5917-4261-941c-869d8640dcc7","originalAuthorName":"吴嘉达"},{"authorName":"吴凌晖","id":"7f356f83-3063-40f3-9776-c509c071320b","originalAuthorName":"吴凌晖"},{"authorName":"伍长征","id":"5d9d0593-1988-404f-affc-df1b3b412596","originalAuthorName":"伍长征"},{"authorName":"李富铭","id":"b00c0857-e9a3-49a2-9eb4-6343048cb000","originalAuthorName":"李富铭"},{"authorName":"宋宙模","id":"a1263040-80fe-40fe-97ae-57f3c74c41d2","originalAuthorName":"宋宙模"}],"categoryName":"|","doi":"","fpage":"29","id":"93400304-22af-4b8d-8ef9-a658b02da3f9","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"73161082-af9d-4da5-a251-7b71ed467564","keyword":"Mo激光氮化","originalKeyword":"Mo激光氮化"},{"id":"1c6563d1-1362-42d7-8d82-e8d4d4ff6409","keyword":"γ-Mo_2N","originalKeyword":"γ-Mo_2N"},{"id":"dab9c303-2132-4536-9447-83246bf6ccb7","keyword":"shock wave","originalKeyword":"shock wave"}],"language":"zh","publisherId":"1005-3093_1995_1_5","title":"Mo的表面脉冲激光氮化","volume":"9","year":"1995"},{"abstractinfo":"介绍了一种在Q235钢表面,利用等离子溅射直接复合渗镀合成氮化钛新工艺方法.该渗镀层包括钢基体上均匀分布细小氮化钛颗粒的渗层和表面氮化钛沉积层.沉积层与基体为冶金结合,不会产生剥落.渗镀层表面硬度在1600~3400HV之间.X射线衍射结果表明,表面为纯氮化钛层,(200)晶面的衍射峰最强,具有明显的择尤取向.用划痕仪进行结合强度检测,声发射曲线未见突起的信号峰值,表明结合强度良好.复合渗镀氮化钛试样在10%硫酸、5%盐酸、3.5%氯化钠水溶液和硫化氢富液中进行腐蚀试验,耐腐蚀性能分别比改性前提高了84、11.67、1.15、21.15倍.","authors":[{"authorName":"高原","id":"ead57d1c-2a84-43e2-a530-925235f7fe4a","originalAuthorName":"高原"},{"authorName":"徐晋勇","id":"b67825b0-69cd-45fc-a62d-1e9c2acb85c5","originalAuthorName":"徐晋勇"},{"authorName":"刘燕萍","id":"7dbcdaef-a8f8-481e-a499-ee60359a340c","originalAuthorName":"刘燕萍"},{"authorName":"王建忠","id":"f5ff49f4-4156-45de-9731-5bd39e6b698d","originalAuthorName":"王建忠"},{"authorName":"隗晓云","id":"7f9fb4aa-130c-4f83-a429-30be0090f0cc","originalAuthorName":"隗晓云"},{"authorName":"徐重","id":"cc243197-0566-4eac-b94e-97220756f99b","originalAuthorName":"徐重"}],"doi":"10.3969/j.issn.1009-6264.2005.03.019","fpage":"61","id":"750db366-770d-4a8e-9d44-8f6573f2a5a9","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"3b7f6897-7ee7-4594-9543-ab5ffbb03196","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"197d7b75-6d8b-4388-a688-7ce65bbd95ee","keyword":"渗镀层","originalKeyword":"渗镀层"},{"id":"fcbb2e6b-953c-44f2-8d2b-5e791575ebdd","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"bbf17304-b776-4d09-bd0c-da68939780ed","keyword":"结合强度","originalKeyword":"结合强度"}],"language":"zh","publisherId":"jsrclxb200503019","title":"碳钢表面氮化钛陶瓷化研究","volume":"26","year":"2005"},{"abstractinfo":"本文概述了近年来为了提高钛及钛合金表面耐磨性在钛合金表面制备氮化钛膜层而采用的表面处理技术.从气体氮化、液体氮化以及离子氮化三方面讨论了每种工艺方法所获表面改性层的结构和性能特征及其适应范围.","authors":[{"authorName":"刘鹏","id":"2e4601f5-275a-459e-a876-79f66c240b25","originalAuthorName":"刘鹏"},{"authorName":"刘晓鹤","id":"968086cc-a2d0-44c8-81e1-b588e8a83c91","originalAuthorName":"刘晓鹤"}],"doi":"","fpage":"90","id":"c1e1a6d0-0e01-4282-879b-b65281b25d8a","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"1ce38d1f-c744-4989-b609-b8a5d5957a72","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"c71f06c3-6a63-4041-98d8-c3e58f31ab9e","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"9f2e84f6-5270-4206-acc9-61f09b1cdf0b","keyword":"气体氮化","originalKeyword":"气体氮化"},{"id":"9ea5d2a6-b61f-4d52-95ae-faae6f3619e6","keyword":"液体氮化","originalKeyword":"液体氮化"},{"id":"630f03c8-b3f6-4f76-9778-c73cd268f1e9","keyword":"离子氮化","originalKeyword":"离子氮化"}],"language":"zh","publisherId":"clkfyyy201506018","title":"钛合金表面氮化技术研究进展","volume":"30","year":"2015"},{"abstractinfo":"研究立方氮化硼薄膜表面的性质对于研究立方氮化硼薄膜的成核机理和应用,具有重要的价值.本文用XPS对立方氮化硼薄膜表面进行研究,并对有关问题进行了讨论.XPS分析表明,立方氮化硼薄膜表面除了B、N外,还含有C和O.从XPS谱图计算得到含有立方相的氮化硼薄膜的N/B为0.90,较接近于氮化硼的理想化学配比1:1;不含立方相的氮化硼薄膜的N/B为0.86,离氮化硼的理想化学配比1:1较远.计算表明立方氮化硼薄膜的顶层六角相的厚度约为0.8nm.","authors":[{"authorName":"邓金祥","id":"d3882a2d-c36e-49df-94bf-d689d49ae10b","originalAuthorName":"邓金祥"},{"authorName":"陈浩","id":"21f8a70e-74f5-4c49-9646-bbf0fb50ce92","originalAuthorName":"陈浩"},{"authorName":"陈光华","id":"8d2d897c-29be-4276-9916-cdd27ad03392","originalAuthorName":"陈光华"},{"authorName":"刘钧锴","id":"e8daddc1-4175-4d75-945a-ca317a464684","originalAuthorName":"刘钧锴"},{"authorName":"宋雪梅","id":"a187df96-3e53-44b8-aeb0-d01001370a8e","originalAuthorName":"宋雪梅"},{"authorName":"朱秀红","id":"c41e016c-06cc-4545-b8df-974df3808f57","originalAuthorName":"朱秀红"},{"authorName":"王波","id":"d62e0182-6c24-494e-b004-98eb8b115dfb","originalAuthorName":"王波"},{"authorName":"严辉","id":"5aaab4e4-280c-49ec-9ead-2b9b83ff6d25","originalAuthorName":"严辉"}],"doi":"","fpage":"3187","id":"3cc93b63-a3da-4704-bfee-c3a281e27e62","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"59fa0fc9-e794-4701-a690-07cc7761886e","keyword":"立方氮化硼薄膜","originalKeyword":"立方氮化硼薄膜"},{"id":"03714af3-bec3-4fee-bb0a-e3dd2655ba48","keyword":"表面","originalKeyword":"表面"},{"id":"88718289-7c19-4e2c-b4f4-1b7562296df6","keyword":"X射线光电子能谱","originalKeyword":"X射线光电子能谱"}],"language":"zh","publisherId":"gncl2004z1896","title":"立方氮化硼薄膜表面的XPS研究","volume":"35","year":"2004"},{"abstractinfo":"氮化硅(Si3N4)因其优异的性能可能在钢铁表面的改性技术中获得重要应用,钢铁表面复合氮化硅层的生成和应用已成为当今材料科学研究开发的热点之一.综述了钢铁表面形成氮化硅薄膜的基本过程,各种制备方法、特点及影响因素.","authors":[{"authorName":"沃银花","id":"579b553b-5f31-4308-889d-d4d1b9a46a79","originalAuthorName":"沃银花"},{"authorName":"杜平凡","id":"7f172bb5-83a2-4d46-9e9a-1e876fb6fb34","originalAuthorName":"杜平凡"},{"authorName":"姚奎鸿","id":"7197a758-81fa-4dee-9b09-77e4a4522465","originalAuthorName":"姚奎鸿"}],"doi":"10.3969/j.issn.1001-3660.2005.02.003","fpage":"8","id":"e3c4a6f2-219c-425f-9f59-c335a12c2833","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d0818867-9243-4da6-9591-f2e565dd766f","keyword":"钢铁表面改性","originalKeyword":"钢铁表面改性"},{"id":"2788eb50-7a55-48f1-bc55-7f46dcc34113","keyword":"氮化硅薄膜","originalKeyword":"氮化硅薄膜"},{"id":"e859acc0-1171-4fa9-8475-387020ef529c","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"d5afc6ca-ebf6-4d0c-83a0-bc082fcea806","keyword":"扩散层","originalKeyword":"扩散层"}],"language":"zh","publisherId":"bmjs200502003","title":"钢铁表面氮化硅薄膜生成技术","volume":"34","year":"2005"},{"abstractinfo":"介绍了在氮气气氛下,用脉冲激光照射钛表面实现钛的诱导氮化的实验结果.利用扫描电镜(SEM)、X射线衍射(XRD)和拉曼光谱对氮化表面进行了结构表征和性能分析.X射线衍射(XRD)结果显示氮化层的主要成分是a-Ti相和δ-TiN相,同时含有少量的a-Ti(N)固溶体.随着激光平均功率的增加,氮化层中δ-TiN相和α-Ti(N)固溶体含量逐渐增加,相应的氮含量也逐渐增加.纳米硬度测试结果显示氮化层的纳米硬度和弹性模量较基材钛明显增加,2mN载荷下测得氮化层的纳米硬度和弹性模量分别在11.5~15GPa和200~250GPa之间.","authors":[{"authorName":"金永吉","id":"c8973be9-eb3d-4f76-b503-aeddf8060136","originalAuthorName":"金永吉"},{"authorName":"邵天敏","id":"ed533e1c-375b-4d50-a8ae-85ba9a1e984f","originalAuthorName":"邵天敏"},{"authorName":"尹亮","id":"bb735e5e-6237-438c-9a11-3067079639fb","originalAuthorName":"尹亮"},{"authorName":"高学宁","id":"994730f2-8c37-4824-82e2-eeabc7cad9f1","originalAuthorName":"高学宁"}],"doi":"10.3969/j.issn.1001-4381.2006.01.013","fpage":"53","id":"47ba8cbd-715b-4872-812b-6fd813c28f1f","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"843782e2-eb06-4047-83be-73c449584434","keyword":"氮化","originalKeyword":"氮化"},{"id":"92bc7372-daf0-424d-940e-2c4d22bfdb3b","keyword":"钛","originalKeyword":"钛"},{"id":"d38b649d-a0d4-4f78-a7c5-3471af73f72f","keyword":"脉冲激光","originalKeyword":"脉冲激光"},{"id":"9cc4eb7a-946e-45c2-93d0-657427bbd3e8","keyword":"氮化钛","originalKeyword":"氮化钛"}],"language":"zh","publisherId":"clgc200601013","title":"脉冲激光诱导钛表面氮化的研究","volume":"","year":"2006"},{"abstractinfo":"利用熔盐热歧化反应在氮化铝陶瓷表面上成功地进行了钛金属化,成功地在氮化铝陶瓷表面上制备了钛金属化膜.还研究了温度、反应物浓度、反应时间对钛金属化膜厚度的影响.研究了金属膜的组成及界面反应机理和界面层的显微结构.研究发现,在热歧化反应沉积钛金属膜的过程中,沉积到AlN陶瓷表面的钛金属与AlN发生反应生成TiN03、TiN和Ti 9Al 2 3.\n","authors":[{"authorName":"黄奇良","id":"2780d330-58c2-4f77-8afe-ad8de2792929","originalAuthorName":"黄奇良"},{"authorName":"潘伟","id":"e239f5ac-7213-4d17-a354-466af2678923","originalAuthorName":"潘伟"},{"authorName":"胡忠","id":"cbbb6013-3687-4605-8718-1edafbd25146","originalAuthorName":"胡忠"}],"doi":"","fpage":"66","id":"cfe5afba-305f-4b91-9f17-d82e3b08868a","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6a47c21a-fe50-4d2c-bb8b-1a476d79c985","keyword":"氮化铝陶瓷","originalKeyword":"氮化铝陶瓷"},{"id":"c2f91d1d-099a-4f16-b712-77e3f259ffb6","keyword":"金属化","originalKeyword":"金属化"},{"id":"ae7e3b80-4f48-48f6-80e5-317ba7a196f0","keyword":"歧化反应","originalKeyword":"歧化反应"},{"id":"5946aefc-6daf-4c0b-9eba-cd8732d0eb96","keyword":"界面微观结构","originalKeyword":"界面微观结构"}],"language":"zh","publisherId":"cldb200202022","title":"氮化铝陶瓷表面钛金属化的研究","volume":"16","year":"2002"},{"abstractinfo":"用高能量密度脉冲等离子体于室温下在氮化硅陶瓷刀具上成功沉积了高硬耐磨的氮化钛涂层.薄膜厚度用光学显微镜和俄歇电子能谱仪测定,薄膜元素和相组成与分布分别用俄歇电子能谱仪、X光电子能谱以及X光衍射仪测定,薄膜微观结构用扫描电镜观察,薄膜表面粗糙度用光学显微镜测定,薄膜力学性能由纳米压痕实验和纳米划痕实验确定,薄膜的磨损性能用工业条件下的切削实验评价.实验结果表明,在最优化条件下,涂层与基体的结合力很好,纳米划痕实验临界载荷达80 mN以上;氮化钛涂层具有很高的硬度和杨氏模量,分别达28 GPa和350 GPa以上.涂层刀具用于HB达2 200MPa~2 300 MPa的HT250钢切削实验表明,刀具耐磨损能力增强,寿命明显提高.","authors":[{"authorName":"彭志坚","id":"2562b4a5-0cfc-4421-a0c3-931e0340a807","originalAuthorName":"彭志坚"},{"authorName":"苗赫濯","id":"e2da143a-d180-4c27-b17c-cde23f6836c5","originalAuthorName":"苗赫濯"},{"authorName":"齐龙浩","id":"b57e1295-cfbc-4587-b6b2-7b940e36a654","originalAuthorName":"齐龙浩"},{"authorName":"龚江宏","id":"f5ae5e4f-749e-4f56-a4d1-da2c7aa3c5ad","originalAuthorName":"龚江宏"},{"authorName":"杨思泽","id":"9cd9c69f-d0a0-45ba-be55-162f060c7395","originalAuthorName":"杨思泽"},{"authorName":"刘赤子","id":"7e93d6b5-966f-4734-9aab-e80ee993311d","originalAuthorName":"刘赤子"}],"doi":"","fpage":"507","id":"4298111d-e5a3-4e08-ae66-9779ce711796","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bf914950-485b-4108-8a16-befc73616ec8","keyword":"高能量密度脉冲等离子","originalKeyword":"高能量密度脉冲等离子"},{"id":"198dfb6f-9f52-491c-a0c2-af2439a79c65","keyword":"TiN涂层","originalKeyword":"TiN涂层"},{"id":"c98f7070-a01f-4055-b31a-4559fa72fa08","keyword":"氮化硅陶瓷","originalKeyword":"氮化硅陶瓷"},{"id":"3f1d7050-1ac3-424d-a4dd-1f03da0927a5","keyword":"刀具","originalKeyword":"刀具"}],"language":"zh","publisherId":"xyjsclygc200405014","title":"氮化硅陶瓷刀具表面涂覆高硬耐磨氮化钛涂层研究","volume":"33","year":"2004"}],"totalpage":4619,"totalrecord":46182}