{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":3,"startPagecode":1},"records":[{"abstractinfo":"设计并制备了一种新型陶瓷-金属结合剂金刚石磨块,测试了金刚石磨块的气孔率、体积密度和力学性能,并在相同条件下进行了陶瓷-金属结合剂金刚石磨块与陶瓷结合剂金刚石磨块磨削SiC增强高硅铝合金复合材料的对比试验.结果表明:陶瓷-金属结合剂对金刚石颗粒的把持力强;新型陶瓷-金属结合剂磨块的抗弯强度与硬度达到了66.02 MPa和74.6 HRB;相同条件下,用陶瓷-金属结合剂金刚石磨块磨削SiC增强高硅铝合金复合材料,比用陶瓷结合剂金刚石磨块磨削得到的磨削表面质量更好,加工效率更高;当加工工件表面粗糙度为0.3μm时,新型陶瓷-金属结合剂磨块的材料去除率达到了普通陶瓷结合剂磨块的两倍,可以解决SiC增强高硅铝合金复合材料难加工的问题.","authors":[{"authorName":"龚艳丽","id":"57798727-4325-452d-a071-4db20da35ae2","originalAuthorName":"龚艳丽"},{"authorName":"邓朝晖","id":"75946624-c6ad-4d11-bf36-f08b9d769a30","originalAuthorName":"邓朝晖"},{"authorName":"孙忠刚","id":"d4b5ae97-e73f-4642-aab5-83a37fd60513","originalAuthorName":"孙忠刚"},{"authorName":"简忠武","id":"81c4ab76-1906-44b4-9c18-d9fc261bdad7","originalAuthorName":"简忠武"}],"doi":"","fpage":"71","id":"0027c988-b6af-4754-91c3-8a9a52ff5790","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"830d1671-d236-459c-b298-05438bd80a27","keyword":"金刚石磨块","originalKeyword":"金刚石磨块"},{"id":"cf727b95-4bc7-40d3-8b3b-7e10762402d0","keyword":"陶瓷-金属结合剂","originalKeyword":"陶瓷-金属结合剂"},{"id":"5a30cf9d-5a19-4ab2-9afa-a29b6ed6a781","keyword":"钴","originalKeyword":"钴"},{"id":"12a9a52a-2392-43ff-bf47-7854e7d518d2","keyword":"润湿性","originalKeyword":"润湿性"}],"language":"zh","publisherId":"jxgccl201504016","title":"新型陶瓷-金属结合剂金刚石磨块的制备及磨削性能","volume":"39","year":"2015"},{"abstractinfo":"对金刚石/铜基粉末注射成形熔体流变性能进行了非线性回归,得到了Cross-WLF模型参数;利用Mold flow有限元软件模拟了注射成形时熔体温度对充填率的影响,并进行了试验验证.结果表明:随着熔体温度的升高,充填率逐渐增大,但增大速率却逐渐下降;当注射压力为10 MPa,注射流量为10 cm3·s-1,熔体温度为170℃时,填充率就达到了100%,试验结果和模拟结果相吻合;此条件下注射成形制备的试样无宏观裂纹及其它缺陷,内部组织均匀,注射效果较好.","authors":[{"authorName":"邓朝晖","id":"db3188d3-56c7-4766-9f22-00ab4efcbf46","originalAuthorName":"邓朝晖"},{"authorName":"伍俏平","id":"15d56992-158f-4948-8d64-4c16f5386355","originalAuthorName":"伍俏平"},{"authorName":"言佳颖","id":"34dec6bc-92b7-4fb3-9d93-ff5666c82d18","originalAuthorName":"言佳颖"},{"authorName":"万林林","id":"f13b5aac-2406-4bea-ac2a-eebd70e1603b","originalAuthorName":"万林林"}],"doi":"","fpage":"93","id":"23a4664d-1a8c-4618-bd68-ed4355d9439f","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a0e5f4b1-c02c-443b-871c-0c768e902947","keyword":"粉末注射成形","originalKeyword":"粉末注射成形"},{"id":"bbc94d80-fde6-4b83-880b-f01423ed5850","keyword":"有限元模拟","originalKeyword":"有限元模拟"},{"id":"91264dd7-3f22-420b-8482-0288e2431fa6","keyword":"熔体温度","originalKeyword":"熔体温度"},{"id":"78ecd282-481f-4e73-9c7a-694859a1a277","keyword":"填充率","originalKeyword":"填充率"}],"language":"zh","publisherId":"jxgccl201410021","title":"金刚石/铜基粉末注射成形熔体温度对充填率影响的有限元模拟","volume":"38","year":"2014"},{"abstractinfo":"用N-(4-羟基苯基)马来酰亚胺(HPM)取代一部分苯酚与甲醛反应得到HPM改性的酚醛树脂(HPM-PF),然后将其与丁腈橡胶改性的酚醛树脂(NBR-PF)进行共混,得到了一种新型的共混改性酚醛树脂(HPM-NBR PF);采用红外光谱仪、差示扫描量热分析仪对HPM-NBR-PF的结构进行了表征,并对其耐热性、力学性能和金刚石树脂节块的耐磨性能进行了研究.结果表明:HPM通过化学键引入至PF的主链中;HPM-NBR-PF的硬度和冲击强度均较普通PF的有显著提高,其中,6% HPM-NBR-PF的耐热性最好,其热质量损失10%时的温度为462℃,最终分解温度为610 ℃;6%HPM-NBR-PF金刚石树脂节块的耐磨性优于普通PF金刚石树脂节块的,前者的磨损量为0.18g,后者的为0.26g.","authors":[{"authorName":"龚艳丽","id":"902436a9-a63f-4fac-9e37-2cac202120e7","originalAuthorName":"龚艳丽"},{"authorName":"邓朝晖","id":"e59f0100-827c-4f2e-87d7-201807c74fc4","originalAuthorName":"邓朝晖"},{"authorName":"龚桂良","id":"3016e83d-fcd8-4068-8d73-a491c64761bc","originalAuthorName":"龚桂良"},{"authorName":"戴继明","id":"99ca4a10-ce56-4c31-8283-3301e408814d","originalAuthorName":"戴继明"},{"authorName":"岳静","id":"b038636a-01d2-4b9a-bfd7-f54bcc7e3cf7","originalAuthorName":"岳静"}],"doi":"10.11973/jxgccl201507013","fpage":"64","id":"93590ba4-46a9-40b9-829b-6fb117050cee","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a92460eb-6faf-46bf-9e4f-bc18b8d70e64","keyword":"马来酰亚胺","originalKeyword":"马来酰亚胺"},{"id":"005af0f6-3301-446e-86f6-a5d3af10f3cf","keyword":"丁腈橡胶","originalKeyword":"丁腈橡胶"},{"id":"8b8e1d45-d1c6-426a-a33b-34329b7dcfc0","keyword":"共混改性酚醛树脂","originalKeyword":"共混改性酚醛树脂"},{"id":"28bf676f-5c60-45f9-a657-d9f785385da3","keyword":"金刚石树脂节块","originalKeyword":"金刚石树脂节块"}],"language":"zh","publisherId":"jxgccl201507013","title":"共混改性酚醛树脂的制备与性能","volume":"39","year":"2015"},{"abstractinfo":"酚醛树脂是树脂结合剂金刚石砂轮中重要的结合剂材料,但是普通的酚醛树脂由于存在脆性大、韧性和耐热性能不足的特点,限制了它在树脂结合剂金刚石砂轮中的应用.因此,需要对普通的酚醛树脂进行改性以提高其耐热性及韧性.综述了从化学和物理两方面提高耐热性的改性方法以及从内增韧和外增韧两方面提高韧性的改性方法,以期改性后的酚醛树脂在树脂结合剂金刚石砂轮中得到更广泛的应用.","authors":[{"authorName":"龚艳丽","id":"8b2aac00-de1a-4032-8712-02973795409e","originalAuthorName":"龚艳丽"},{"authorName":"邓朝晖","id":"7dc6c7c9-c4ba-4b15-8dea-20cd61c38433","originalAuthorName":"邓朝晖"},{"authorName":"伍俏平","id":"93f62c97-805e-4c13-aeaa-88ad2ad93d3f","originalAuthorName":"伍俏平"},{"authorName":"杨新国","id":"343827af-d07e-4f2d-b66c-689920be04d9","originalAuthorName":"杨新国"},{"authorName":"李辉","id":"1ae355b8-b774-49aa-bf64-36c51617a431","originalAuthorName":"李辉"}],"doi":"","fpage":"83","id":"ba85c399-9c8a-4a45-8ec7-091622fa1071","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ad89ccde-ce53-42d5-9629-683070c9340d","keyword":"酚醛树脂","originalKeyword":"酚醛树脂"},{"id":"b9477fe5-ee24-44ff-a425-e3fbd59a1422","keyword":"树脂结合剂","originalKeyword":"树脂结合剂"},{"id":"c29982fb-7ff2-4e81-bbeb-89e6e8d52b64","keyword":"改性","originalKeyword":"改性"},{"id":"9268dd02-d896-4646-93a0-e6199506f5fb","keyword":"耐热性","originalKeyword":"耐热性"},{"id":"3a82da53-2679-41c0-a631-348193cef98a","keyword":"韧性","originalKeyword":"韧性"}],"language":"zh","publisherId":"cldb201311015","title":"高性能改性酚醛树脂的研究进展","volume":"27","year":"2013"},{"abstractinfo":"通过正交试验对金刚石/铜基钎料粉末小型薄壁件的注射成型工艺参数进行了优化。结果表明:当模具温度为40℃,注射压力为12MPa,注射温度为150℃,注射流量为20cm^3·S^-1,为最佳工艺参数组合,能获得表面光整、组织均匀的注射生坯;随着注射压力的增大,注射生坯密度增大;注射温度升高,生坯密度降低;注射流量增大,生坯密度先升后降。","authors":[{"authorName":"伍俏平","id":"b9c7ca6c-a7a9-42a6-9c94-1f6309cbcd96","originalAuthorName":"伍俏平"},{"authorName":"邓朝晖","id":"09605fbf-f661-4b3e-a852-24f4d88100ea","originalAuthorName":"邓朝晖"},{"authorName":"潘占","id":"bf91df4b-988b-4448-9a7c-c20426f31417","originalAuthorName":"潘占"},{"authorName":"张荣辉","id":"9bfce8ef-d8e6-48c5-95ea-7e92a3e5b569","originalAuthorName":"张荣辉"},{"authorName":"张正","id":"cac775b5-b3cf-43aa-8be0-c03ab12fdcb7","originalAuthorName":"张正"}],"doi":"","fpage":"62","id":"ce393d88-89b5-4276-bd5b-9b8f7f62743b","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f9311982-e3a2-48c8-a027-3222887c2cbf","keyword":"金刚石","originalKeyword":"金刚石"},{"id":"ecc8f14d-ec58-4cb6-95c8-008943453f3e","keyword":"铜基钎料粉末","originalKeyword":"铜基钎料粉末"},{"id":"5009089c-e8e0-4b64-9df1-9ad7e98b7c6a","keyword":"注射压力","originalKeyword":"注射压力"},{"id":"7ae6f07b-2462-4581-8ec3-76e770cfbecd","keyword":"注射温度","originalKeyword":"注射温度"},{"id":"75ab46c6-93f3-4823-a893-4e7bce810ccd","keyword":"注射流量","originalKeyword":"注射流量"}],"language":"zh","publisherId":"jxgccl201210017","title":"金刚石/铜基钎料粉末注射成型工艺参数的优化","volume":"36","year":"2012"},{"abstractinfo":"分析了限制镁合金板材应用发展的关键技术瓶颈和内在根源,在对等径角轧制、异步轧制、累计叠轧和反复单向弯曲等镁合金板材特殊轧制技术的研究现状及其基本原理、特点和应用进行全面归纳总结的基础上,指出剪切变形在镁合金板材成形中具有重要意义,开发或采用特殊制备技术并实现板材轧制过程中的晶粒细化、孪晶控制和织构调整是促进镁合金板材应用发展最行之有效的方法之一。","authors":[{"authorName":"魏琳俊","id":"e56df0f2-004a-463b-8e56-c97e1e4131d0","originalAuthorName":"魏琳俊"},{"authorName":"杨寿智","id":"786bb211-f470-4a82-a0aa-672a4db78471","originalAuthorName":"杨寿智"},{"authorName":"夏伟军","id":"be5517f0-298e-463e-bfc0-39caed3910e4","originalAuthorName":"夏伟军"},{"authorName":"邓朝晖","id":"a285547f-e3a1-4a4e-b2a1-e4ac0d1924a1","originalAuthorName":"邓朝晖"},{"authorName":"刘灵","id":"6bd94af3-e339-4de6-9afc-61fddb299596","originalAuthorName":"刘灵"}],"doi":"","fpage":"14","id":"f1d7ee6a-87ed-4e9d-8031-30986321ded3","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"1c4268dc-8b92-430c-b7ce-93420f8dbc30","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"a260a38f-4cda-4de7-a8fe-5001d0398528","keyword":"特殊轧制技术","originalKeyword":"特殊轧制技术"},{"id":"039adab2-bdd8-4411-9723-4e98ae82fe0d","keyword":"等径角轧制","originalKeyword":"等径角轧制"},{"id":"2c5fa08c-74d8-4040-8ea2-1221eb020603","keyword":"异步轧制","originalKeyword":"异步轧制"},{"id":"5c7731b5-839d-4728-aab0-d32ba2614644","keyword":"累计叠轧","originalKeyword":"累计叠轧"},{"id":"c9278ad7-b00b-4659-b817-f94040f761d0","keyword":"反复单向弯曲","originalKeyword":"反复单向弯曲"}],"language":"zh","publisherId":"jxgccl201211004","title":"镁合金板材特殊轧制技术的研究进展","volume":"36","year":"2012"},{"abstractinfo":"针对工程陶瓷磨削损伤现象,探讨材料去除与损伤机理,综述国内外基于断裂力学和损伤力学的损伤建模技术在工程陶瓷磨削损伤领域的研究进展.对单颗磨粒建模和砂轮三维形貌建模方法进行总结讨论,在此基础上介绍数值模拟技术在工程陶瓷磨削损伤研究中的应用现状.指出基于细观损伤力学,实现针对力热耦合作用下工程陶瓷磨削损伤的数值模拟,最后就这一方向的深入研究工作做展望.","authors":[{"authorName":"万林林","id":"1816b50e-ae4b-44bd-82e7-ce8add018c85","originalAuthorName":"万林林"},{"authorName":"刘志坚","id":"c68914a9-700f-470a-9f9d-422d0f6944f6","originalAuthorName":"刘志坚"},{"authorName":"邓朝晖","id":"74853118-076d-4de4-b019-fa28ab634978","originalAuthorName":"邓朝晖"},{"authorName":"刘伟","id":"541f8448-1268-40b8-865f-d3832a48c828","originalAuthorName":"刘伟"}],"doi":"","fpage":"117","id":"f3320dd0-5e57-4234-bca4-0b15fda3004f","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"8fe91b81-518d-4c41-91ba-98b63a8eeb8f","keyword":"工程陶瓷","originalKeyword":"工程陶瓷"},{"id":"89f94ce0-45c3-4380-9f94-d2d32ba21663","keyword":"磨削损伤","originalKeyword":"磨削损伤"},{"id":"24143e65-b1e1-4adb-99c3-cf70a667e14d","keyword":"细观力学建模","originalKeyword":"细观力学建模"},{"id":"161d61d3-f869-4f4d-9391-5db0902b28c5","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"bqclkxygc201604028","title":"工程陶瓷磨削损伤建模与数值模拟研究进展","volume":"39","year":"2016"},{"abstractinfo":"为深入探讨磨削材料去除机理,以氮化硅陶瓷的单颗金刚石磨粒磨削为研究对象,进行旋转变切深的连续划痕正交磨削实验,分析砂轮线速度、工件速度、磨削深度等磨削参数对切向磨削力、法向磨削力以及工件划痕形貌的影响规律.结合压痕断裂力学模型分析可知,氮化硅陶瓷在单颗金刚石磨粒磨削时,材料主要以显微塑性变形为主,存在少量脆性破碎.","authors":[{"authorName":"刘伟","id":"4f6f181e-2e6c-4b9c-b3f0-eb3328aaed09","originalAuthorName":"刘伟"},{"authorName":"邓朝晖","id":"99bb2c82-ef88-4704-84ad-1b874d90e6eb","originalAuthorName":"邓朝晖"},{"authorName":"商圆圆","id":"69d43051-b09f-4c9a-84ec-c3129c63d0d6","originalAuthorName":"商圆圆"},{"authorName":"万林林","id":"46bfe073-1743-4fc3-a5c8-0f3b81591665","originalAuthorName":"万林林"}],"doi":"","fpage":"1","id":"83e55cc1-e962-44b8-afce-5252d81c5b5e","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"d5d0ba3a-8eb6-4cae-b381-bc6466d31740","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"52477101-7d82-4b07-8772-883f0f4c0564","keyword":"单颗磨粒","originalKeyword":"单颗磨粒"},{"id":"8cb876b6-ea76-4142-aee1-11bf67adc859","keyword":"磨削","originalKeyword":"磨削"},{"id":"5e7e4a66-a3b2-4521-b6f9-02521b4c135e","keyword":"金刚石","originalKeyword":"金刚石"},{"id":"d311d5f1-1a3e-4a7b-b7d0-dc4c6e3668ae","keyword":"正交实验","originalKeyword":"正交实验"}],"language":"zh","publisherId":"bqclkxygc201606001","title":"氮化硅陶瓷的单颗金刚石磨粒磨削试验研究","volume":"39","year":"2016"},{"abstractinfo":"针对金刚石砂轮磨粒尺寸、形状的不规则性和空间位置不确定性的特点,采用球坐标中随机点产生的空间平面切分实体和截角多面体相结合的方法,并考虑氮化硅陶瓷工件的磨削亚表面形貌和裂纹损伤,建立了截角多面体磨粒和含有典型裂纹的工件模型.进行单颗磨粒切削氮化硅陶瓷的有限元仿真和实验,结果表明:磨削加工和数值仿真的磨削力值变化趋势相同,差值小于8%,切削力随砂轮转速增大而减小、随工件速度和切削深度增大而增大,而切削深度对切削力的影响程度最大.","authors":[{"authorName":"万林林","id":"71092d8a-8c73-46c6-aa7d-03e20351d08e","originalAuthorName":"万林林"},{"authorName":"刘志坚","id":"cc52f043-3125-43cd-90da-e4f91e91854a","originalAuthorName":"刘志坚"},{"authorName":"邓朝晖","id":"de65c2af-766a-420d-8c16-e2fd14e2de61","originalAuthorName":"邓朝晖"},{"authorName":"刘伟","id":"0e569e38-fa6f-49cf-ba22-6eac3e64634f","originalAuthorName":"刘伟"},{"authorName":"赵小雨","id":"c5b10d3c-dc5e-46da-b2d0-868f20edb1f7","originalAuthorName":"赵小雨"}],"doi":"10.3969/j.issn.1007-2330.2016.06.008","fpage":"40","id":"3516be7e-b3e0-4d7e-be37-ec65f3fc63fa","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"080cca03-b8e2-4ac1-9b11-7f14562f2e4e","keyword":"截角多面体磨粒","originalKeyword":"截角多面体磨粒"},{"id":"8018645b-d029-42eb-8ae9-3c2d809f076f","keyword":"工程陶瓷","originalKeyword":"工程陶瓷"},{"id":"3f0ca55f-6aa3-45d1-bd71-2830adf5147f","keyword":"有限元仿真","originalKeyword":"有限元仿真"},{"id":"83f747c1-7423-4100-aed0-f963d502151b","keyword":"切削力","originalKeyword":"切削力"}],"language":"zh","publisherId":"yhclgy201606008","title":"氮化硅陶瓷切削仿真与实验","volume":"46","year":"2016"},{"abstractinfo":"以CFRP复合构件为研究对象,采用横刃减小的成形刀片对复合构件孔内定心齿槽进行加工试验,分析刀片横刃大小与走刀路径对切削力的影响规律.结果表明:刀片横刃的减小有利于切削力的降低,但横刃减小到0.5 mm时,切削力减小的趋势变缓;采用横刃为0.5 mm的刀片沿着齿槽轮廓一次进给完成齿槽加工的走刀方式,其单齿加工时间较短、切削力较小、加工质量较好,该种齿槽加工方案较为合理.","authors":[{"authorName":"苏飞","id":"91f8f7d4-f16d-4895-93ea-7fc6f7894af4","originalAuthorName":"苏飞"},{"authorName":"袁军堂","id":"37282c18-3354-4971-acf8-19d91871d152","originalAuthorName":"袁军堂"},{"authorName":"汪振华","id":"3afccafc-f249-49d8-9283-ac7498e1943a","originalAuthorName":"汪振华"},{"authorName":"邓朝晖","id":"e4deb996-cf5f-4789-b1b2-bbfcfca630b6","originalAuthorName":"邓朝晖"}],"doi":"10.12044/j.issn.1007-2330.2017.03.021","fpage":"86","id":"c6fa3fec-6258-43f6-ade4-4aede5b43d6c","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a12fcc46-98f4-4aa0-8e85-a8641a2291d9","keyword":"平纹CFRP","originalKeyword":"平纹CFRP"},{"id":"1780ca1f-32b5-456a-9179-a306f08ac821","keyword":"齿槽","originalKeyword":"齿槽"},{"id":"70528c6c-90c3-42b6-9c8b-457ead42965f","keyword":"PCD刀片","originalKeyword":"PCD刀片"},{"id":"89f1e924-6aac-4285-85e0-498cb9ca5145","keyword":"复合构件","originalKeyword":"复合构件"},{"id":"0fa02041-5ee8-43ec-88d8-e6bebd933ba6","keyword":"成形刀具","originalKeyword":"成形刀具"}],"language":"zh","publisherId":"yhclgy201703021","title":"CFRP定心内齿槽的加工","volume":"47","year":"2017"}],"totalpage":3,"totalrecord":21}