{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对高温氦气加热的甲烷蒸汽重整制氢过程进行了热力学分析.结果表明,在较高温度条件下压力对系统重整性能的影响很小.在重整压力大于1 MPa,水碳比大于2时,随着温度的升高,热效率先增加到最大值然后又缓慢下降;在温度800~ 1000℃范围内,随着水碳比的增加热效率先升高后下降.分析表明,利用高温气冷堆氦气供热的甲烷蒸汽重整制氢系统,选择较高的水碳比和重整温度有利于提高系统热效率和制氢性能.得到了匹配高温气冷堆供热系统且能使氢气产量和热效率的接近最大值的甲烷蒸汽重整反应优化操作参数范围.","authors":[{"authorName":"王锋","id":"39799806-5c1f-412e-b58f-b00d17c644dc","originalAuthorName":"王锋"},{"authorName":"周菁","id":"7a507790-4bbe-45d1-905c-f1b02d438e65","originalAuthorName":"周菁"},{"authorName":"李隆键","id":"669b555b-171d-474d-8365-a4ee2b3cbaf4","originalAuthorName":"李隆键"}],"doi":"","fpage":"1581","id":"9a834d19-757e-4c5c-9e8a-56ab2b0a9462","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6a2ada91-b330-42ca-be00-64164d079f55","keyword":"高温气冷堆","originalKeyword":"高温气冷堆"},{"id":"e7b0381a-7102-4917-a948-6f3fdbd220e9","keyword":"甲烷蒸汽重整","originalKeyword":"甲烷蒸汽重整"},{"id":"9e2fcf95-908c-4aad-8ac8-c032939c8be6","keyword":"制氢","originalKeyword":"制氢"},{"id":"9f310306-ec90-4a6f-8836-b9312a25a894","keyword":"热力学分析","originalKeyword":"热力学分析"}],"language":"zh","publisherId":"gcrwlxb201408026","title":"高温氦气加热甲烷蒸汽重整制氢热力学分析","volume":"35","year":"2014"},{"abstractinfo":"选择甲烷蒸汽重整催化剂用于直接内重整熔融碳酸盐燃料电池(DIR-MCFC)中,并考察了DIR-MCFC的性能,讨论了电池放电量、气体压力、燃料气进料水/碳比(S/C)等因素对该催化剂性能的影响.结果表明,重整催化剂能够满足电池放电需求;放电量大小影响电池内的H2含量,但对CH4含量影响不大;当气体压力为0.36MPa时,电池内的H2含量最大;S/C越低,电池性能越高,相同放电量下,S/C=1时的电池电压比S/C=2时的高.","authors":[{"authorName":"李广龙","id":"350b6cfd-235c-4da6-ba56-02186a6f7f8a","originalAuthorName":"李广龙"},{"authorName":"周利","id":"69b60769-5cb9-4dcd-9be3-b6e135cfe34c","originalAuthorName":"周利"},{"authorName":"王英旭","id":"1989866d-a78c-44f3-8497-2cbea241d20d","originalAuthorName":"王英旭"},{"authorName":"王鹏杰","id":"cf4891b9-e4d2-422f-a5e4-3d7408ec07c4","originalAuthorName":"王鹏杰"},{"authorName":"林化新","id":"7e23078d-d81b-40ee-8bc7-6475b0da0aa1","originalAuthorName":"林化新"},{"authorName":"朱秀玲","id":"a9667918-454c-4625-8152-757fcff54982","originalAuthorName":"朱秀玲"},{"authorName":"邵志刚","id":"76cebb1b-3515-4557-82b7-da2cce95d8f2","originalAuthorName":"邵志刚"}],"doi":"10.3724/SP.J.1088.2011.00637","fpage":"106","id":"395af419-c61d-4da1-99f6-ba105ef63f46","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"0bd72583-35e5-4e98-8085-0c5da74d97c6","keyword":"甲烷蒸汽重整","originalKeyword":"甲烷蒸汽重整"},{"id":"c082d0ca-23e4-4805-8887-dcc05d14ac2d","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"8c386220-01c6-4954-8bf0-863c90fb1ffb","keyword":"直接内重整","originalKeyword":"直接内重整"},{"id":"9e7b24cb-3f4b-4fb5-8c55-752f97daf17e","keyword":"熔融碳酸盐燃料电池","originalKeyword":"熔融碳酸盐燃料电池"}],"language":"zh","publisherId":"cuihuaxb201101016","title":"直接内重整熔融碳酸盐燃料电池中甲烷蒸汽重整催化剂探索性研究","volume":"32","year":"2011"},{"abstractinfo":"氢气作为高效、洁净的二次能源将成为未来社会的主要能源之一.甲烷重整是一种被广泛使用的经济、高效的制氢工艺.催化剂是重整工艺中的重要组成部分,其种类、活性和寿命对氢气的产率、纯度和制氢成本具有重要影响.详细论述了甲烷水蒸气重整、二氧化碳重整、部分氧化重整用催化剂的种类、制备方法和催化机理等.","authors":[{"authorName":"杨修春","id":"af60b48b-1131-4178-8597-b8d6df906252","originalAuthorName":"杨修春"},{"authorName":"韦亚南","id":"f90a86b4-b09e-472c-b6bf-40c1aa38324a","originalAuthorName":"韦亚南"}],"doi":"","fpage":"49","id":"041ef446-473a-4c22-9682-af2d6ffc3462","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"365ca9c1-7584-4635-b7c0-40e771e5c886","keyword":"制氢","originalKeyword":"制氢"},{"id":"cc65582b-33de-4e7f-bfe6-ad57e67f3e16","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"9fb40d94-76d4-4fa0-b628-69696ab422c6","keyword":"甲烷重整","originalKeyword":"甲烷重整"}],"language":"zh","publisherId":"cldb200705013","title":"甲烷重整制氢用催化剂的研究进展","volume":"21","year":"2007"},{"abstractinfo":"针对微细通道内甲烷自热重整反应,采用活性位浓度比为10∶1的Ni/Rh催化剂建立了数学物理模型,通过数值模拟方法研究了绝热工况下温度、流量、氧碳比及水碳比等因素对催化重整特性的影响规律.结果表明:催化反应的温度阈值为750K,当温度超过750K时甲烷转化率迅速升高;在纯氧条件下随着甲烷流量的增大,制氢功率增大,而在空气条件下制氢功率减小;随着氧碳比的增加,甲烷的转化率升高,制氢功率先增大后逐渐减小;随着水碳比的增加,甲烷转化率降低;当入口反应气中氧碳比控制在0.5以下、水碳比为3.5且入口温度为900K时,可实现微通道内甲烷催化重整的高效转化.","authors":[{"authorName":"张力","id":"cec7cf72-1ecf-4f5a-8202-b0f154490380","originalAuthorName":"张力"},{"authorName":"杨鑫","id":"2372e0ad-21f6-4e56-be4f-218a6dbd681a","originalAuthorName":"杨鑫"},{"authorName":"闫云飞","id":"8668931c-e981-4220-a289-4f19d2df8136","originalAuthorName":"闫云飞"},{"authorName":"杨仲卿","id":"640501a2-9ab6-4546-b043-222d1e3b5e1c","originalAuthorName":"杨仲卿"}],"doi":"","fpage":"146","id":"efaf9ff1-a9cb-4950-b0f1-1162f389aad6","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e0d18b87-64e6-4647-9ed9-c7da0d18ae3e","keyword":"Ni/Rh催化剂","originalKeyword":"Ni/Rh催化剂"},{"id":"5e85e2ce-9e4c-49cb-988d-6a1310ff919c","keyword":"自热重整","originalKeyword":"自热重整"},{"id":"a6e2f66b-0d72-47f7-bbbe-9f1cabf92f4f","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"4cf0a327-00b7-494d-aab8-d80a81f0aac4","keyword":"微细通道","originalKeyword":"微细通道"},{"id":"4be858fa-0f83-42cd-b100-68a28f086a3d","keyword":"层流","originalKeyword":"层流"}],"language":"zh","publisherId":"cldb201214037","title":"Ni/Rh催化剂下微通道甲烷自热重整制氢特性研究","volume":"26","year":"2012"},{"abstractinfo":"微动力装置中碳氢燃料催化燃烧被认为是有效的方法,但燃烧室内燃料催化重整普遍存在由积碳导致的催化剂失活等问题.本文采用数值方法研究了微细腔中甲烷湿空气在镍基催化剂上的自热重整反应,重点分析含湿量对甲烷自热重整反应及积碳特性的影响.结果表明:含湿量将增强甲烷重整反应;自热反应散热量和表面积碳浓度均随含湿量增加而降低.混合物质量流量为36 g/h时,当含湿量d>1.20 kg/kg后,甲烷转化率、氢气质量分数和积碳浓度变化幅度很小,分别接近 53.1%、3.07%和2.40x10-6 kmol/m2.","authors":[{"authorName":"冉景煜","id":"febafec2-aaab-44ce-a07e-6301b83e0040","originalAuthorName":"冉景煜"},{"authorName":"涂维峰","id":"d4cac83b-998c-49ed-b957-ed2833020263","originalAuthorName":"涂维峰"}],"doi":"","fpage":"345","id":"3e6d4c20-5193-43b8-8995-148744700795","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"449b3c25-35af-4d84-b738-ab2747a2f371","keyword":"微细腔","originalKeyword":"微细腔"},{"id":"88ef7012-78dd-4599-9f15-a5908c44ec61","keyword":"甲烷湿空气","originalKeyword":"甲烷湿空气"},{"id":"025335a3-cecc-4a27-9e2f-a00ab5c60e99","keyword":"自热重整","originalKeyword":"自热重整"},{"id":"72607cdf-0c1e-4104-b945-6f21778d3fe9","keyword":"积碳","originalKeyword":"积碳"},{"id":"5db98558-85e8-41d7-99dc-ba6cebd7802e","keyword":"含湿量","originalKeyword":"含湿量"}],"language":"zh","publisherId":"gcrwlxb201102043","title":"含湿量对甲烷湿空气自热重整积碳特性的影响","volume":"32","year":"2011"},{"abstractinfo":"本文采用切向气流和磁场协同驱动的旋转滑动弧低温等离子体,以氮气为载气,进行了甲烷重整制氢的研究.考察了进气流量,CH4/N2比和外加电阻对制氢效果的影响,结果表明,随着进气流量的增加,甲烷转化率逐渐降低;随着CH4/N2比的增大,外加电阻为40 kΩ时,甲烷转化率逐渐降低,最大可达87.49%,而外加电阻为70 kΩ时,甲烷转化率却先降低后增大;减小外加电阻有利于增加甲烷转化率和氢气选择性,但会造成能耗的增加.","authors":[{"authorName":"张浩","id":"d895b164-b3b9-4b2d-b684-0cbdaf517c8f","originalAuthorName":"张浩"},{"authorName":"李晓东","id":"711c8ee2-7d8d-4d90-ad93-5ce40945892a","originalAuthorName":"李晓东"},{"authorName":"张云卿","id":"1c0eaff4-0d15-4f28-a9d0-d796314c285b","originalAuthorName":"张云卿"},{"authorName":"张明","id":"7ddce69e-0654-473c-908c-c11ae082ff89","originalAuthorName":"张明"},{"authorName":"杜长明","id":"69bf54e9-01c1-42ce-99b1-79ee3e9cee39","originalAuthorName":"杜长明"},{"authorName":"严建华","id":"407dda7c-6edd-459a-b0ce-d15e62acaf3e","originalAuthorName":"严建华"}],"doi":"","fpage":"787","id":"a83d5bd2-40b1-4045-b099-ac87d42cfe32","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"df3e90d2-f5b0-476f-aacf-7a6df5012da8","keyword":"旋转滑动弧","originalKeyword":"旋转滑动弧"},{"id":"ca007fd4-58f5-4263-9221-04d516324a53","keyword":"甲烷重整","originalKeyword":"甲烷重整"},{"id":"8407402c-35e0-4a11-a030-c1233dbe571f","keyword":"制氢","originalKeyword":"制氢"}],"language":"zh","publisherId":"gcrwlxb201304046","title":"氮气气氛下旋转滑动弧重整甲烷制氢实验研究","volume":"34","year":"2013"},{"abstractinfo":"实验研究固定床反应器内CH4-CO2重整热化学储能过程,揭示加热温度、反应物流量及CH4/CO2摩尔比等参数对热化学储能过程的影响机制.实验结果显示:反应器内部轴向与径向均存在较大温度差;提高加热温度能够提高甲烷转化率和化学储能效率,但反应温度升高会导致反应器轴向温差变大,对反应器稳定运行不利;随着反应物流速的增大,甲烷转化率降低,化学储能效率先增后减存在极大值;提高CO2含量有利于提高甲烷转化率,但会导致化学储能效率的降低.","authors":[{"authorName":"陈源","id":"243a016a-13a4-4b2c-89e6-e3733ab4df19","originalAuthorName":"陈源"},{"authorName":"丁静","id":"b40457fe-6b85-4407-ac29-42c3900cd82c","originalAuthorName":"丁静"},{"authorName":"陆建峰","id":"554bb4e4-5cfb-4426-b0c7-2b1fc13d4504","originalAuthorName":"陆建峰"},{"authorName":"杨建平","id":"4df6a967-033d-45d2-aa7d-51bf017b4fd0","originalAuthorName":"杨建平"}],"doi":"","fpage":"1591","id":"9b00853b-34bd-409f-99b9-7ac452a6b311","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"25d14f14-8495-4d91-a319-ce9f7a08ab0e","keyword":"热化学储能","originalKeyword":"热化学储能"},{"id":"85d63be4-d4b6-40e7-8cef-c45c13a0042c","keyword":"CH4-CO2重整","originalKeyword":"CH4-CO2重整"},{"id":"81e078e3-ca65-4d51-a167-fb25edc3d664","keyword":"固定床反应器","originalKeyword":"固定床反应器"},{"id":"73792b1e-7cb7-4c3b-9433-29e711c7cad0","keyword":"储能效率","originalKeyword":"储能效率"}],"language":"zh","publisherId":"gcrwlxb201408028","title":"甲烷二氧化碳重整热化学储能实验研究","volume":"35","year":"2014"},{"abstractinfo":"紧凑型甲烷重整器燃烧管道由燃料气体通道、多孔层以及固体平板组成.采用三维数值模拟方法,对甲烷入口速度、温度等对催化燃烧反应以及产热特性影响进行了研究.结果显示,甲烷入口速度由2.5 m/8增大到10 m/s时,最大化学反应速率提高了20.4%,CH4利用率下降了41.2%,最大热流量提高了11.8%;温度由873 K升高到1023 K时,反应速率提高了16.9倍;CH4利用率提高了7.5%;最大温升提高了2.1倍.研究结果对紧凑型甲烷重整器的设计开发具有一定的指导意义.","authors":[{"authorName":"杨国刚","id":"8534bf22-aaa3-4e02-b50b-7b74e052310f","originalAuthorName":"杨国刚"},{"authorName":"岳丹婷","id":"72b875a5-b8be-4e27-a8c3-55c930b18ce6","originalAuthorName":"岳丹婷"},{"authorName":"吕欣荣","id":"ebf021b6-6aae-4c16-b5e9-9b6869ca192f","originalAuthorName":"吕欣荣"},{"authorName":"袁金良","id":"c21dd775-773d-47bd-984c-529ba8fe4257","originalAuthorName":"袁金良"}],"doi":"","fpage":"451","id":"415578b1-e41f-4d53-9789-6c87dfff2419","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"aeeb3039-9e9b-4202-b69f-af6edc446245","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"96d4f3d3-9bcb-4e67-afbf-a7cd9afc9bdf","keyword":"紧凑型重整器","originalKeyword":"紧凑型重整器"},{"id":"8d2deb1b-f83f-427b-9d7c-4fa546094771","keyword":"燃烧管道","originalKeyword":"燃烧管道"},{"id":"a58b760a-fea3-4443-bef6-d3c283bcc637","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201103024","title":"甲烷入口条件对紧凑型重整器燃烧管道化学反应与产热特性影响","volume":"32","year":"2011"},{"abstractinfo":"研究了制备参数对用于甘油蒸汽重整反应的Ni基催化剂性能的影响。采用过量浸渍法、等体积浸渍法和改进的平衡沉积过滤(EDF)法制备了一系列Al2O3负载的8 wt%Ni催化剂,运用X射线衍射(XRD)、电感耦合等离子体光谱仪、N2吸附-脱附、扫描电镜(SEM)、透射电镜和H2程序升温还原(TPR)表征了催化剂的表面和体相性质;采用CHN分析仪和SEM表征了使用后催化剂以测定其表面沉积的碳及其形貌。结果表明,制备方法对所制催化剂的织构、结构和表面性质影响很大,导致氧化铝表面Ni物种的分散和种类的不同。即使XRD和TPR结果证实形成了铝酸镍晶相,但Ni/Al-edf催化剂中β峰的贡献大于其它两个催化剂的,表明在这种情况下铝酸镍更容易还原。在550 oC以上CO2选择性增加和CO选择性不变,表明Ni/Al-wet和Ni/Al-edf催化剂可成功催化水汽变换反应。另外,650oC时Ni/Al-edf催化剂上甘油生成气相产物的转化率、氢气产率以及烯丙醇、乙醛和乙酸选择性最高,且它在所有催化剂中的积炭量也最低。将催化剂结构性质、分散度和还原性与其催化性能相关联,发现EDF法制得的催化剂比表面积和活性相分散度更高,更易被还原,因而其活性和生成H2的选择性更高,也更抗积碳。","authors":[{"authorName":"M. A. Goula","id":"42b69378-573d-454f-bd2a-cc78b65c3199","originalAuthorName":"M. A. Goula"},{"authorName":"N. D. Charisiou","id":"cd9423c5-1530-4dc2-82eb-67490d1040d4","originalAuthorName":"N. D. Charisiou"},{"authorName":"K. N. Papageridis","id":"a9af6634-37d7-40e4-a466-b89d866d923c","originalAuthorName":"K. N. Papageridis"},{"authorName":"G. Siakavelas","id":"167697ef-2eb8-4b74-9ebd-1ba41c54aa51","originalAuthorName":"G. Siakavelas"}],"doi":"10.1016/S1872-2067(16)62518-4","fpage":"1949","id":"42d5f549-c3be-4984-8d27-6bcc68319734","issue":"11","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"c7aa196a-af2c-4087-a961-8e479420e45d","keyword":"甘油","originalKeyword":"甘油"},{"id":"c1167287-9c12-49ac-88fd-59d25632794c","keyword":"氢气","originalKeyword":"氢气"},{"id":"75305f93-7f26-415d-88cf-da122b749b3a","keyword":"蒸汽重整","originalKeyword":"蒸汽重整"},{"id":"a9521ecb-b4b7-434f-8baf-6718e4cb1e3f","keyword":"负载型镍催化剂","originalKeyword":"负载型镍催化剂"},{"id":"182147f5-be19-47e5-adcb-307a9bd1ecb3","keyword":"催化剂制备","originalKeyword":"催化剂制备"}],"language":"zh","publisherId":"cuihuaxb201611016","title":"制备条件对用于甘油蒸汽重整反应Ni基催化剂性能的影响","volume":"37","year":"2016"},{"abstractinfo":"甲烷无氧芳构化(MDA)和甲烷水蒸气重整(MSR)的耦合反应可以大幅度提高甲烷无氧芳构化反应的稳定性.单独的甲烷无氧芳构化反应失活较快,甲烷转化率从0.5 h的14.5%很快下降至15 h的3.5%.而采用联合MSR/MDA反应体系,甲烷的转化率从12.5 h的11.5%非常缓慢地下降至60 h后的6.5%.MSR反应原位生成的CO和H_2能降低反应中生成的CHr物种数量,减少催化剂上积炭的牛成,进而延长反应时间.MSR反应过程中高比例H_2的生成更能有效地减少与B酸相关的积炭的生成,从而更好地抑制反应的失活.","authors":[{"authorName":"姚颂东","id":"d1df0515-9bb8-4ffa-9a85-0ea206fa6437","originalAuthorName":"姚颂东"},{"authorName":"孙长勇","id":"ad7bc855-3232-4be1-bbeb-1c64f49d26be","originalAuthorName":"孙长勇"},{"authorName":"李娟","id":"668e049a-f528-4e0d-8195-3723381dbf41","originalAuthorName":"李娟"},{"authorName":"顾立军","id":"222b3cc4-7f81-4d8c-9ad4-027d3485c9a3","originalAuthorName":"顾立军"},{"authorName":"申文杰","id":"943f7dcb-d3e2-4995-a724-3cc6e7223e9c","originalAuthorName":"申文杰"}],"doi":"","fpage":"1022","id":"37ddc68d-c0b5-473d-9d65-07d7f68eec1d","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f5f5ad4f-0b3c-4089-966e-99aa7ea88c5b","keyword":"甲烷无氧芳构化","originalKeyword":"甲烷无氧芳构化"},{"id":"c9948983-853d-46c2-877c-0a7560ae9347","keyword":"甲烷水蒸气重整","originalKeyword":"甲烷水蒸气重整"},{"id":"2f061d54-ed34-4ec5-803e-1a95ceec39e4","keyword":"反应耦合","originalKeyword":"反应耦合"},{"id":"712a3b1f-fa70-4a69-8801-3c628f8726fb","keyword":"钼","originalKeyword":"钼"},{"id":"7d49a7a3-a5c8-4b8c-bd81-da8e42458834","keyword":"MCM-49","originalKeyword":"MCM-49"},{"id":"955e8898-c92f-445a-bf7f-7a403377a540","keyword":"积炭","originalKeyword":"积炭"}],"language":"zh","publisherId":"cuihuaxb200910011","title":"甲烷水蒸气重整与甲烷无氧芳构化反应耦合提高Mo/MCM-49催化剂稳定性","volume":"30","year":"2009"}],"totalpage":236,"totalrecord":2360}