{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以ZrOC12·8H2O,Ce(NO3)3·6H2O为起始原料,氨水为沉淀剂,用共沉淀法结合喷雾干燥真空冷冻干燥和超临界流体干燥技术制备了铈稳定四方氧化锆纳米级超微粉体,用热重-差示扫描量热计(TG-DSC)、X射线衍射分析仪(XRD)、物理吸附仪(Autosorb-MP-1)等仪器就制备方法对粉体的表面、孔径分布、晶粒尺寸和相对结晶度等性能进行了研究,结果表明:3种方法制得的初始粉体的颗粒尺寸分别为6.19,7.05和2.27 nm,比表面积分别为162.88,143.00,444.50 m2/g.从室温到900℃,随着煅烧温度的提高,SPD法和、VFD法制备的试样颗粒度显著粗化,而SCFD法制备的粉体粒度粗化则较慢.粉体材料的晶化温度、堆密度、相对结晶度和孔体积随制备方法的不同而有较大差异.","authors":[{"authorName":"贺中央","id":"606cc000-3fe5-44b8-aa18-63c9541157fc","originalAuthorName":"贺中央"},{"authorName":"赵惠忠","id":"b67eaf4a-6eac-49f1-9692-8f54d3c81b7f","originalAuthorName":"赵惠忠"},{"authorName":"孙加林","id":"aecad466-103e-42ab-9a16-13fd71e1ac71","originalAuthorName":"孙加林"}],"doi":"","fpage":"813","id":"c319f2b1-86d9-4276-95ae-f7fc4f230fcf","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b1ea8a8a-3de2-403d-83bb-c91c214297b0","keyword":"超细氧化锆粉体","originalKeyword":"超细氧化锆粉体"},{"id":"d872c36a-32e2-474e-9afb-633e1e78d014","keyword":"共沉淀","originalKeyword":"共沉淀"},{"id":"8309c7b1-3220-4b45-9286-abcd1d1ad99b","keyword":"超临界流体干燥","originalKeyword":"超临界流体干燥"},{"id":"8dcf8cb5-d68b-4de0-b219-6dedee976c46","keyword":"喷雾干燥","originalKeyword":"喷雾干燥"},{"id":"81863c16-a348-4cc9-bb9b-1eab84c93b15","keyword":"真空冷冻干燥","originalKeyword":"真空冷冻干燥"}],"language":"zh","publisherId":"xyjsclygc2008z1214","title":"不同干燥法掺铈超细氧化锆粉体的制备及表征","volume":"37","year":"2008"},{"abstractinfo":"以硝酸盐为主要原料,采用共沉淀法和真空冷冻干燥技术,制备了镁铝混合氢氧化物和纳米级镁铝尖晶石超细粉体,分析了共沉淀产物的热分解过程,标定了不同温度处理后试样的物相组成,确定了纳米镁铝尖晶石的形成温度和煅烧条件,观察了试样煅烧前后显微形貌变化,测试了试样的比表面积.结果表明:控制适当的溶液pH值,用硝酸盐共沉淀和真空冷冻干燥法可制得粒径小、比表面积大的镁铝混合超细粉体,且其经600℃处理后即开始转化成尖晶石,经1 000℃处理后已全部转变成粒径为50 nm左右的纳米尖晶石,尖晶石化温度比传统的固相反应合成法低450℃~550℃.","authors":[{"authorName":"张鑫","id":"e2b2904b-f2f1-4172-9a08-8d30fee8bdf9","originalAuthorName":"张鑫"},{"authorName":"赵惠忠","id":"9a159ff0-aa06-4312-ae3f-2622cee7bb3d","originalAuthorName":"赵惠忠"},{"authorName":"马清","id":"1119ab89-f211-4024-a7a6-9d72717265b6","originalAuthorName":"马清"},{"authorName":"李晓伟","id":"9bdc5673-6c6d-4965-a45f-797ba1385aa9","originalAuthorName":"李晓伟"},{"authorName":"汪厚植","id":"fd87398b-080e-4578-8e64-c866f0c783e9","originalAuthorName":"汪厚植"},{"authorName":"张文杰","id":"796d07d4-c7aa-4db0-92a0-db0a335ecb36","originalAuthorName":"张文杰"}],"doi":"","fpage":"78","id":"646d7bd8-647a-47cb-909b-5a2e30c4c76b","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a4b78e7f-4a02-4afb-b4cd-57db09cf5ae4","keyword":"真空冷冻干燥法","originalKeyword":"真空冷冻干燥法"},{"id":"3608631a-f0b3-4954-84d4-a78db0738891","keyword":"镁铝尖晶石","originalKeyword":"镁铝尖晶石"},{"id":"ac7677e2-60a2-4973-9414-b1f08b78480d","keyword":"纳米材料","originalKeyword":"纳米材料"}],"language":"zh","publisherId":"xyjsclygc2005z1023","title":"真空冷冻干燥法制备纳米尖晶石","volume":"34","year":"2005"},{"abstractinfo":"本实验在猪主动脉的真空冷冻干燥各过程中,采用了相同的温度设定,但对一次干燥终点使用了不同的判定方法,通过Micro-CT扫描及称重分析,计算失水率、孔隙率、脱水率及力学性能等指标,比较出两种方法对结果造成的不同影响.实现了在现有的冻干设备及环境下,对一次干燥终点判断的优化方法.该方法很好地解决了冻干过程的管壁皱缩、组织塌陷问题,同时,提高了冻干后猪主动脉的脱水率、孔隙率及复水率,获得了更加良好的生物力学特性.","authors":[{"authorName":"刘萌芳","id":"0f2adfb6-83b0-4770-913c-f1af23d7e9d5","originalAuthorName":"刘萌芳"},{"authorName":"陶乐仁","id":"0dbbc6ad-91b9-4c2f-a571-24221d3c7435","originalAuthorName":"陶乐仁"},{"authorName":"殷猛","id":"a9de4751-e6de-4370-8008-7cfeb36db084","originalAuthorName":"殷猛"},{"authorName":"曹清","id":"127652ef-eea5-4d71-89b2-415983249186","originalAuthorName":"曹清"}],"doi":"","fpage":"1142","id":"b8c42822-86d8-4b0a-af95-4ea371f2cf55","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0e528ef3-2e91-40dc-bdef-13b20270c870","keyword":"猪主动脉","originalKeyword":"猪主动脉"},{"id":"775c4cf6-eef2-41a8-874c-56b10a093b0b","keyword":"一次干燥终点","originalKeyword":"一次干燥终点"},{"id":"d9f5d3ae-73c0-47c8-8277-e81790d06bb2","keyword":"塌陷","originalKeyword":"塌陷"},{"id":"3a9406ba-b936-498e-8c2e-f99ddc9aa26b","keyword":"脱水率","originalKeyword":"脱水率"}],"language":"zh","publisherId":"gcrwlxb201306033","title":"猪主动脉血管真空冷冻干燥方法的优化","volume":"34","year":"2013"},{"abstractinfo":"以硝酸镁和硝酸铝为主要原料,NH3·H2O为沉淀剂,用均相混合物共沉淀法制得镁铝混合均匀的溶胶,再用真空冷冻干燥(VFD)方法在-50℃,13.3 Pa的真空度下制得MgAl2O4的前驱体粉体.用TG-DSC、XRD、TEM及Autosorb-1-M等仪器研究了热处理温度及反应体系的pH值对镁铝均匀混合纳米粉体材料的物相转变、显微形貌、表面性能等的影响.研究表明:控制溶液的pH值在9.0附近,采用共沉淀-真空冷冻干燥方法,可制得粒径小、比表面积大的MgO-Al2O3二元混合纳米粉体,且其起始尖晶石化温度在600℃,经过1000℃2 h处理后,已全部转变成粒径为50 nm左右的纳米尖晶石,比传统制备镁铝尖晶石的温度低500~600℃.","authors":[{"authorName":"赵惠忠","id":"5c1f4812-0be6-442b-9846-5f7f9691625b","originalAuthorName":"赵惠忠"},{"authorName":"葛山","id":"5071fcf0-7040-4583-acaf-760174972da3","originalAuthorName":"葛山"},{"authorName":"张鑫","id":"ecbff40e-a0f5-4aea-a8a5-8a3a76fb2168","originalAuthorName":"张鑫"},{"authorName":"马清","id":"f34efa91-207a-4cb6-b1ca-da526223cc19","originalAuthorName":"马清"},{"authorName":"汪厚植","id":"40e9c601-c56a-4ead-8152-2a5020426037","originalAuthorName":"汪厚植"},{"authorName":"张文杰","id":"19204b08-ba60-497a-a8ba-3d96c5a96794","originalAuthorName":"张文杰"}],"doi":"10.3969/j.issn.1001-1935.2005.03.003","fpage":"168","id":"b3e53f13-12f9-4ffe-9e6b-2fffb6d4686d","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"64ef9f0e-a575-4f00-853f-f5aa5902d2ca","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"80cdbeb6-a549-42f2-a9af-ea48301d8291","keyword":"共沉淀-真空冷冻干燥法","originalKeyword":"共沉淀-真空冷冻干燥法"},{"id":"ab62dfd8-88d7-4bf0-a129-bd06c0fc3efb","keyword":"镁铝尖晶石","originalKeyword":"镁铝尖晶石"}],"language":"zh","publisherId":"nhcl200503003","title":"共沉淀-真空冷冻干燥法制备纳米MgAl2O4粉体","volume":"39","year":"2005"},{"abstractinfo":"以螯合型焦磷酸钛酸酯偶联剂(NDZ-311)为改性剂对壳聚糖(CS)进行改性,采用真空冷冻干燥法制备了HA-TCP/CS多孔生物材料,研究了NDZ-311的用量与多孔生物材料抗压强度和孔隙率的关系,并采用SEM、XRD、IR等对材料进行了分析测试.结果表明,NDZ-311中-O-链状醚键官能团能发生各种类型的酯基转化反应,与CS填料产生交联,材料的抗压强度得到提高,CS填料添加量可达50%以上,且不会发生相分离.随着NDZ-311含量的增加,多孔生物材料的抗压强度先逐渐降低然后升高,孔隙率先逐渐升高然后降低.当m(HA-TCP):m(CS)=7:3时,NDZ-311质量分数为1%时抗压强度为2.3MPa,孔隙率升至最高84.8%,此时多孔生物材料的抗压强度和孔隙率匹配较好,孔隙呈层错板条搭接,且分布均匀,HA-TCP颗粒均匀分散在CS模板上,材料的相结构变化不大,只是材料中各相对应的特征衍射峰的强度略有增强.","authors":[{"authorName":"李慕勤","id":"92115c94-3e22-4bd0-b52f-413b0327d17c","originalAuthorName":"李慕勤"},{"authorName":"管大为","id":"071985e4-c9b6-45dc-ba1d-b7aa3b6af30a","originalAuthorName":"管大为"},{"authorName":"马臣","id":"f9cf80ce-7fe6-4e63-a74f-b2184a236724","originalAuthorName":"马臣"},{"authorName":"王晶彦","id":"6de2ac35-1d7d-4517-9a0e-96aa1475046f","originalAuthorName":"王晶彦"}],"doi":"","fpage":"42","id":"72e2a130-7ef6-4524-8a00-4ac7fd4116d6","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2aafeedd-a460-4893-a469-d741d079485d","keyword":"磷灰石","originalKeyword":"磷灰石"},{"id":"e9ec4cfd-6db1-41de-a54d-a1cfbddceeed","keyword":"壳聚糖","originalKeyword":"壳聚糖"},{"id":"b1fc080b-e017-4c16-ba2e-270b16a02a51","keyword":"多孔生物材料","originalKeyword":"多孔生物材料"},{"id":"8879a050-b34a-46fd-b642-94b4a995aa71","keyword":"偶联剂","originalKeyword":"偶联剂"},{"id":"b0034993-ccef-456b-9fbb-5fe990777856","keyword":"真空冷冻干燥","originalKeyword":"真空冷冻干燥"}],"language":"zh","publisherId":"cldb200914012","title":"钛酸酯偶联剂对磷灰石/壳聚糖多孔生物材料性能的影响","volume":"23","year":"2009"},{"abstractinfo":"以玉米淀粉为碳源,利用其凝胶化性质,综合采用常压冰冻、真空冷冻干燥和高温炭化技术成功制备出三维网状结构炭质整体材料.研究玉米淀粉凝胶化工艺,如玉米淀粉浓度和电解质乙酸镍浓度对淀粉海绵前驱体和三维网状炭质整体材料形貌和结构的影响.结果发现:经过凝胶化处理,玉米淀粉的结晶度降低,结晶区的特征衍射峰完全消失;淀粉海绵前驱体和三维网状结构炭质整体材料的形貌和结构与淀粉浓度和电解质乙酸镍浓度密切相关,三维网状结构淀粉海绵前驱体形成的适宜淀粉质量浓度为10%,掺乙酸镍淀粉海绵前驱体三维网状结构形成的适宜乙酸镍浓度为0.1 mol/L;乙酸镍具有调变三维网状结构炭质整体材料宏观体积和孔结构的功能,可使三维网状结构炭质整体材料的宏观体积收缩近80%,贯通的大孔结构转变成封闭孔结构.","authors":[{"authorName":"于畅","id":"dbd7f4f0-dc9c-44fc-8fa1-c22864275b2e","originalAuthorName":"于畅"},{"authorName":"段江波","id":"bd32d501-a91c-4d45-8a57-01dfce35d704","originalAuthorName":"段江波"},{"authorName":"樊丽曼","id":"fb2ffc9e-9ae4-4c8a-a1ac-b557ca274afb","originalAuthorName":"樊丽曼"},{"authorName":"陈梦","id":"a727764a-0dd0-4ed5-95b3-a9074b41dcf8","originalAuthorName":"陈梦"},{"authorName":"邱介山","id":"6c2d530d-0511-4276-9957-491ee125ad26","originalAuthorName":"邱介山"}],"doi":"","fpage":"178","id":"bcec8def-7e14-4293-ac4c-862bbfc255c4","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"37f2e494-a428-4737-9094-d580dd4b6fd7","keyword":"凝胶化","originalKeyword":"凝胶化"},{"id":"e6245ce6-bf9e-411a-bf9c-3e79c9d3d8c3","keyword":"真空冷冻干燥","originalKeyword":"真空冷冻干燥"},{"id":"3a7af268-8d03-4996-96c7-d3ab83dcda67","keyword":"淀粉海绵","originalKeyword":"淀粉海绵"},{"id":"46aa36a4-05c1-45a4-bbb6-6611a7a73644","keyword":"三维网状结构炭质整体材料","originalKeyword":"三维网状结构炭质整体材料"}],"language":"zh","publisherId":"xxtcl201303003","title":"玉米淀粉基三维网状结构炭质整体材料的制备","volume":"28","year":"2013"},{"abstractinfo":"冷冻干燥法作为一种制备多孔材料的技术在过去的十多年中发展迅速,尤其是通过此法制得的多孔陶瓷展现出独特的微观结构和优良的力学性能,引起了各国学者极大的研究兴趣,成为当前多孔陶瓷的一个研究热点。本文目的是回顾冷冻干燥技术的发展历史,详细介绍了冷冻干燥技术的基本原理、特点,工艺过程的影响因素,以及潜在应用,并指出了冷冻干燥法的发展趋势。","authors":[{"authorName":"刘岗","id":"d1d463dc-f573-4867-91b0-cf9c98b1c874","originalAuthorName":"刘岗"},{"authorName":"严岩","id":"11263d79-34ae-4d97-a5c4-56f12504e8a9","originalAuthorName":"严岩"}],"doi":"10.3724/SP.J.1077.2014.13506","fpage":"571","id":"016ebe90-c570-42ce-964d-4b878edcfbc6","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e403e9f6-4df0-4cac-8d35-82096ad92ecd","keyword":"冷冻干燥","originalKeyword":"冷冻干燥"},{"id":"6a5fe61d-d2df-4f0f-bd9c-98eb393008da","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"8621d517-f285-486d-9f69-8db9b4525203","keyword":"研究进展","originalKeyword":"研究进展"},{"id":"5efa6571-d3f3-4b99-a03c-364643e768db","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"wjclxb201406002","title":"冷冻干燥法制备多孔陶瓷研究进展","volume":"","year":"2014"},{"abstractinfo":"以A1C13·6H2O和TEOS(Tetraethyl Orthoailicate)为主要原料,用(NH4)2CO3作溶胶剂,采用溶胶-凝胶法结合VFD(真空冷冻干燥)技术制备出了Al2O3-SiO2气凝胶.用TG-DSC,XRD,SEM和 Autosorb等技术对热处理前后的气凝胶进行分析.结果表明:使用(NH4)2CO3制备出的Al2O3-SiO2气凝胶是一种单双相混合凝胶,热处理过程中铝硅尖晶石与莫来石相同时生成,并且进一步升温试样完全莫来石化后,颗粒均匀,粒度大小在纳米范围以内.","authors":[{"authorName":"丛培源","id":"b60933c7-caf5-4a16-a671-e72d16718043","originalAuthorName":"丛培源"},{"authorName":"赵惠忠","id":"84d271b1-962c-4a10-9a3a-85e1bfba4c3e","originalAuthorName":"赵惠忠"}],"doi":"","fpage":"120","id":"9bfd355d-6c29-4f65-a248-2947aa775392","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"36f6f7a9-f09b-4a1d-818f-74c9b03f86af","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"29f88056-e571-4c75-87a3-865a9cc9abe5","keyword":"莫来石","originalKeyword":"莫来石"},{"id":"d528d092-10d3-4a3c-a2db-91555609ff9d","keyword":"真空冷冻干燥","originalKeyword":"真空冷冻干燥"}],"language":"zh","publisherId":"xyjsclygc2008z1030","title":"Sol-Gel-VFD法制备莫来石超细粉体","volume":"37","year":"2008"},{"abstractinfo":"为制备氧化硅多孔陶瓷,尝试了快速冷冻干燥法,探索了氧化硅浆体的分散剂和pH值对孔结构的影响.结果表明:使用0.1wt%六偏磷酸钠作为分散剂时,孔壁处团聚现象明显;改用聚甲基丙烯酸钠团聚显著减少.主要原因是氧化硅表面的Si-OH可能与六偏磷酸钠络合成Si-Na4P6O18-,但其在水中易断裂,减弱了颗粒之间排斥力,未能抑制团聚;而聚甲基丙烯酸钠吸附在氧化硅表面,可能形成Si-C4H5O2等空间位阻抑制团聚.在聚甲基丙烯酸钠的基础上再调节浆体pH值至~10使氧化硅的zeta电位达到~-60 mV,可更好抑制团聚.综上所述冻干法适合制备开口通孔结构的多孔氧化硅陶瓷.","authors":[{"authorName":"刘晓光","id":"f8ddda69-81a3-4359-9334-1e819cf67902","originalAuthorName":"刘晓光"},{"authorName":"薛文东","id":"c5218019-98d3-465b-bd19-815b815af799","originalAuthorName":"薛文东"},{"authorName":"李妍","id":"dd8b351f-28b8-4d45-af92-4ec3619c7c00","originalAuthorName":"李妍"},{"authorName":"石存兰","id":"f9f7e72a-f139-43f2-80d3-d72381f1fd87","originalAuthorName":"石存兰"},{"authorName":"李勇","id":"c48eaa46-d356-4353-b97a-3c587522ab8a","originalAuthorName":"李勇"},{"authorName":"孙加林","id":"46a04017-d0f1-453c-bed5-ea146bae998a","originalAuthorName":"孙加林"}],"doi":"","fpage":"35","id":"a2ee31b9-6544-4edc-ac46-ca31e5e90513","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"76f2a87e-74c9-466e-9df0-1c767203fc00","keyword":"快速冷冻干燥法","originalKeyword":"快速冷冻干燥法"},{"id":"2e38ffb1-fa04-4249-8d0a-c2cc498d1513","keyword":"氧化硅多孔陶瓷","originalKeyword":"氧化硅多孔陶瓷"},{"id":"b657aad0-f608-411f-b354-bc66355d79bf","keyword":"团聚","originalKeyword":"团聚"},{"id":"bb0b29e1-d11e-4204-9034-0a9a05d47efb","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"4f9433d1-b24a-4e5c-b20e-65ecc5433ef7","keyword":"pH值","originalKeyword":"pH值"}],"language":"zh","publisherId":"rgjtxb98201601006","title":"快速冷冻干燥法制备多孔氧化硅陶瓷","volume":"45","year":"2016"},{"abstractinfo":"介绍湘钢喷煤压缩空气冷冻干燥系统的设计要点.设计根据喷煤工艺对压缩空气的要求和现场压缩空气的参数,对冷冻干燥系统进行工艺配置和设备选型,在实践中取得了良好的效果.","authors":[{"authorName":"李汉明","id":"387e921e-6931-4cf2-aa86-09cea316c756","originalAuthorName":"李汉明"}],"doi":"","fpage":"10","id":"d5a8ddbe-eb3d-4d49-ab53-fba875e9ee8d","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"16bce750-0c4b-4708-86fa-0c263a5dd72e","keyword":"喷煤","originalKeyword":"喷煤"},{"id":"08d4635b-cf93-4078-b7bc-7a32f7f2c3cf","keyword":"压缩空气","originalKeyword":"压缩空气"},{"id":"d22d2e4e-61dc-4bdf-96e2-7c62a69eedc8","keyword":"冷冻","originalKeyword":"冷冻"},{"id":"43adedcd-7158-4d81-80e5-e38f895094eb","keyword":"干燥","originalKeyword":"干燥"}],"language":"zh","publisherId":"gt200007003","title":"湘钢喷煤压缩空气冷冻干燥系统设计","volume":"35","year":"2000"}],"totalpage":657,"totalrecord":6568}