{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为开发新型廉价高效的析氢材料,用恒电流复合电沉积方法制各了(Ni-Mo)-TiO_2复合电极,讨论了TiO_2悬浮量和电沉积时间对电极催化析氢性能的影响.用XRD和SEM对电极的晶体结构和表面形貌进行了表征,以稳态极化曲线对电极的催化析氢特性进行了评价.结果表明,(Ni-Mo)-TiO_2电极是纳米TiO_2粒子相和纳米晶Ni-Mo固溶体相构成的复合电极.电极具有较高的催化析氢活性.在25℃、0.5 mol·dm~(-3)H_2SO_4溶液中其表观交换电流密度是Ni-Mo合金电极的2.6倍,是Ni电极的60倍.在电流密度为100 mA·cm~(-2)时,电极电势相对于Ni-Mo电极正移了120 mV,相对于Ni电极正移了542 mV.催化活性的提高源于反应机理的改变,表观活化吉布斯自由能相对于Ni-Mo合金电极降低了24.48 kJ·mol~(-1).","authors":[{"authorName":"李爱昌","id":"9ec9210c-4a64-40d6-9192-c3889a397160","originalAuthorName":"李爱昌"},{"authorName":"龙运前","id":"9bca9ff5-9d45-445c-99bf-e56f1af8ab33","originalAuthorName":"龙运前"},{"authorName":"刘辉","id":"650e22bb-88d1-4abd-a638-e078edca48a9","originalAuthorName":"刘辉"},{"authorName":"路敏","id":"51a00541-dbd5-459f-a637-1b55af0b1ea6","originalAuthorName":"路敏"},{"authorName":"张翠丽","id":"f8fe14cd-7ac0-48be-9ba7-4d677a8eec48","originalAuthorName":"张翠丽"}],"doi":"","fpage":"793","id":"485cedc5-9665-4baf-bb26-8bdf729f3d4c","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"bac1e82e-2e5b-4768-998d-94ef3c8399ce","keyword":"复合电沉积","originalKeyword":"复合电沉积"},{"id":"4a15a868-72d3-4519-953f-34b75f7e8ab4","keyword":"电催化","originalKeyword":"电催化"},{"id":"e089773b-3dc2-4257-8b0a-31d207f064f9","keyword":"析氢","originalKeyword":"析氢"},{"id":"3961843e-c771-4e9a-90b9-3ed227a8801a","keyword":"(Ni-Mo)-TiO_2","originalKeyword":"(Ni-Mo)-TiO_2"}],"language":"zh","publisherId":"clkxygy200906014","title":"复合电沉积制备(Ni-Mo)-TiO_2电极及其电催化析氢性能","volume":"17","year":"2009"},{"abstractinfo":"为提高Ni-Mo合金镀层的电化学性能,在Ni-Mo镀液中添加纳米ZrO2颗粒成功制备了Ni-Mo/Zr02复合镀层,研究了Ni-Mo/ZrO2合金电镀层的结构及其化学活性,并与Ni-MoNi/ZrO2的相关性能进行了对比.研究结果表明:Ni-Mo/ZrO2镀层结构为非晶+纳米晶并混杂有ZrO2纳米颗粒,添加ZrO2纳米颗粒对镀层表面的形貌有一定影响;在电流密度低于250 mA/cm2时,Ni-Mo/ZrO2复合镀层具有比Ni-MoNi/ZrO2合金镀层更优异的析氢催化活性,其耐腐蚀性能优干其他两种镀层;高耐蚀性与Ni-Mo非晶纳米晶基体有关,Mo元素易被氧化形成氧化膜,提高了复合镀层表面的结构稳定性,而复合的ZrO2纳米颗粒本身为陶瓷颗粒也具有高的耐蚀性.","authors":[{"authorName":"李凝","id":"4167ce93-0f65-4e00-8f98-5f5a3a1e537c","originalAuthorName":"李凝"},{"authorName":"高诚辉","id":"1517a4f1-4421-423d-a57f-4f457e596ae8","originalAuthorName":"高诚辉"}],"doi":"","fpage":"104","id":"f5316c6c-aa10-4b54-91bd-b815b1731a3e","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"3fe37552-9bbd-4850-ac0f-e1c060d325e1","keyword":"纳米ZrO2","originalKeyword":"纳米ZrO2"},{"id":"8d5c7065-c229-4abc-8a11-4d68adeeaec2","keyword":"镍钼合金","originalKeyword":"镍钼合金"},{"id":"4c7da14f-1cf4-4c12-9ecd-9ca7c9339985","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"},{"id":"d69ac281-9df4-4dc6-b628-760ffb6e8fed","keyword":"催化活性","originalKeyword":"催化活性"}],"language":"zh","publisherId":"clkxygy201101021","title":"电沉积Ni-Mo/ZrO2合金镀层结构及其电化学性能","volume":"19","year":"2011"},{"abstractinfo":"以钛酸四丁酯为原料,采用溶胶-凝胶法制备了纯TiO_2Mo掺杂TiO_2纳米粒子,并利用XRD、UV-VIS、XPS等测试手段对制备的TiO_2纳米粒子进行表征;以亚甲基蓝为光催化反应模型,考察了煅烧温度、钼掺杂量等对TiO_2晶格畸变,晶粒大小,晶型,光学性能及光催化活性的影响.结果表明:大部分Mo~(6+)取代晶格中Ti~(4+)的位置,引起晶格畸变,抑制晶粒长大与TiO_2由锐钛矿相向金红石相转变;样品经450 ℃煅烧, 随Mo掺杂量增加,激发波长红移增加,当煅烧温度升至600 ℃,1.8%Mo-TiO_2样品中锐钛矿相含量增加,致光激发波长蓝移;适量的Mo掺杂有利于提高TiO_2光催化效果,Mo掺杂物质的量分数为1.8%, 经600 ℃煅烧后样品的光催化性能最佳.","authors":[{"authorName":"陈桂华","id":"31a0b21f-3a2d-4e23-8845-6d17ddf22d44","originalAuthorName":"陈桂华"},{"authorName":"闫瑞强","id":"a8446149-fcb9-4493-a812-e3ed59b36b8a","originalAuthorName":"闫瑞强"},{"authorName":"梁华定","id":"99ecc3fd-3834-442f-920d-32216eaac159","originalAuthorName":"梁华定"},{"authorName":"杨辉","id":"06ca09e4-95e0-4e2e-965e-7b43057d6691","originalAuthorName":"杨辉"}],"doi":"","fpage":"944","id":"19dd028f-9acb-428a-93f4-d6e59d7e5914","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"37f862e9-ab0f-4f62-a6a7-836b66ad10df","keyword":"钼","originalKeyword":"钼"},{"id":"276aa501-f760-4842-92fb-76c8ce9ebf78","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"05c39a8d-b523-445d-8754-d3ed7c837d10","keyword":"光催化降解","originalKeyword":"光催化降解"},{"id":"297bee49-3596-44fa-8117-653cb319dcb0","keyword":"亚甲基蓝","originalKeyword":"亚甲基蓝"}],"language":"zh","publisherId":"gsytb200905016","title":"Mo掺杂TiO_2的制备及其光催化性能","volume":"28","year":"2009"},{"abstractinfo":"研究了纳米TiO_2吸附剂对Mo(Ⅵ)、Re(Ⅶ)的吸附行为,考察了溶液pH、吸附时间、温度等因素对吸附的影响. 结果表明,纳米TiO_2Mo(Ⅵ)的吸附在pH值为1~8条件下,吸附率超过99%,2 mL 0.05 mol/L NaOH溶液可将吸附的Mo(Ⅵ)完全洗脱,解吸率可达97%. pH值在1~10范围内,纳米TiO_2几乎不吸附Re(Ⅶ),从而达到Mo(Ⅵ)、Re(Ⅶ)分离. 在275~323 K范围内,纳米TiO_2Mo(Ⅵ)的最大吸附容量从11.51 mg/g增至14.19 mg/g,吸附过程符合Langmuir等温式. 纳米TiO_2分离钼后,溶液剩余的铼,用活性碳吸附,pH值在1~10范围内,Re(Ⅶ)的吸附率可达99%,用浓氨水进行洗脱,洗脱率可达96%;吸附过程可用准二级反应动力学模型描述,是以化学吸附为控制步骤的吸附过程;吸附等温线与Freundlich模型有较好的拟合.","authors":[{"authorName":"张蕾","id":"97b2e110-aec4-4a38-a8e6-2522b3eba1e9","originalAuthorName":"张蕾"},{"authorName":"刘雪岩","id":"c1360d59-ce2a-4483-a17d-2f49ff05321b","originalAuthorName":"刘雪岩"},{"authorName":"康平利","id":"2769f8aa-7f7f-4246-b9d8-dec9483aed19","originalAuthorName":"康平利"}],"doi":"10.3969/j.issn.1000-0518.2009.11.025","fpage":"1362","id":"2367b809-8a2b-4b1f-abab-5c40eab8c1cb","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"1f58088e-c679-4130-9843-4945ff373651","keyword":"Mo(Ⅵ)","originalKeyword":"Mo(Ⅵ)"},{"id":"dc612756-1c26-4abf-a746-8ae8346bdeb0","keyword":"Re(Ⅶ)","originalKeyword":"Re(Ⅶ)"},{"id":"e497d3d1-630c-47d0-a0a3-37fe6ab7f805","keyword":"纳米TiO_2","originalKeyword":"纳米TiO_2"},{"id":"f4d8969b-dac5-482b-86b9-1d4682d1628e","keyword":"活性碳","originalKeyword":"活性碳"},{"id":"2031b0ae-abf8-4016-927e-00e1c9376521","keyword":"吸附","originalKeyword":"吸附"},{"id":"2130d431-5c55-42d1-b08c-67431fcd19d9","keyword":"解吸","originalKeyword":"解吸"}],"language":"zh","publisherId":"yyhx200911025","title":"纳米TiO_2分离富集Mo(Ⅵ)和Re(Ⅶ)","volume":"26","year":"2009"},{"abstractinfo":"使用多孔阳极氧化铝模板, 电沉积制备了Ni-Mo合金纳米线. 用扫描电镜(SEM)和表面能谱(XPS)表征沉积物形貌和组成, 用伏安法研究了Ni-Mo合金纳米线的沉积条件及催化性能. 结果表明, Ni-Mo合金纳米线的直径在20~30 nm之间. Ni-Mo共沉积的伏安图上在-1.4 V(vs Ag/AgCl)左右出现一个扩散电流平台. 光电子能谱(XPS)表明, Ni-Mo合金纳米线的共沉积电位出现在-1.4 V以后, 大于这个电位钼以低价氧化物存在. Mo-Ni离子浓度比大于2时扩散电流平台消失. 柠檬酸盐浓度达到2~3倍镍盐浓度时, 扩散电流平台趋于稳定. 在较优条件下电沉积的Ni-Mo合金纳米线显示较高的析氢催化活性.","authors":[{"authorName":"徐国荣","id":"d73de407-9905-44e4-879f-65f3d10c5471","originalAuthorName":"徐国荣"},{"authorName":"任凤莲","id":"1711791c-3bc6-4d0e-85dc-c3e9c2e4c61d","originalAuthorName":"任凤莲"},{"authorName":"司士辉","id":"4ffc2ce9-357d-40d0-bfdf-b5d2964b1d5c","originalAuthorName":"司士辉"},{"authorName":"易清风","id":"4799e0a0-a622-49a9-82d1-02070f5ab84f","originalAuthorName":"易清风"}],"doi":"10.3969/j.issn.0258-7076.2007.02.007","fpage":"169","id":"a5b48e6f-26b3-491b-a28c-e1c15c49c16d","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a5737462-c452-4a79-a8ed-26de4e276510","keyword":"多孔阳极氧化铝模板","originalKeyword":"多孔阳极氧化铝模板"},{"id":"a49d41d1-4939-4cc0-a8d4-eb48b2681c96","keyword":"Ni-Mo合金纳米线","originalKeyword":"Ni-Mo合金纳米线"},{"id":"3e8017cb-24ee-4f98-b09c-a708f7af244a","keyword":"诱导共沉积","originalKeyword":"诱导共沉积"},{"id":"5f8a3371-46db-491d-8f79-1dd8bd02e2d3","keyword":"析氢反应","originalKeyword":"析氢反应"}],"language":"zh","publisherId":"xyjs200702007","title":"模板法电化学共沉积Ni-Mo合金纳米线的研究","volume":"31","year":"2007"},{"abstractinfo":"研究了电镀条件对电镀Ni-MoNi-W合金结构的影响,发现各个因素中pH值的变化对镀层形成晶态或非晶态起着决定性的作用.这些结构上的变化,仍可用作者在解释Ni-P镀层结构时发展的模型加以解释.","authors":[{"authorName":"黑祖昆","id":"b6250b5b-6b1d-4feb-ab1f-4016839c8a6d","originalAuthorName":"黑祖昆"},{"authorName":"李静环","id":"b31fda5e-5340-4e23-862d-062b3b760125","originalAuthorName":"李静环"},{"authorName":"林树智","id":"e4a8fd59-dac4-4485-9cc5-bebed38196c5","originalAuthorName":"林树智"}],"categoryName":"|","doi":"","fpage":"21","id":"03030432-8e60-478a-a9fa-a8d3739d9911","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1985_4_10","title":"电镀Ni-Mo(W)合金结构的研究","volume":"21","year":"1985"},{"abstractinfo":"Ni_(100-x)Mo_x(x=20,30,38)alloys have been synthesized by mechanical alloying.The structure evolution of powders in mechanical alloying process has been monitored by X-ray diffraction,scanning electron microscopy and transmission electron microscopy analyses.The results show that the Ni_(62)Mo_(38)sample becomes partially amorphous after high energy ball milling,while the Ni_(80)Mo_(20)and Ni_(70)Mo_(30)become non-equilibrium nanocrystals.","authors":[{"authorName":"LIANG Guoxian WANG Erde HUO Wencan Harbin Institute of Technology","id":"54535955-205b-47a3-9236-1807a5a8e5e9","originalAuthorName":"LIANG Guoxian WANG Erde HUO Wencan Harbin Institute of Technology"},{"authorName":"Harbin","id":"33a9df4a-557a-4485-9e16-145c46524958","originalAuthorName":"Harbin"},{"authorName":"China Post Box 435","id":"4cfee566-d8c8-478b-aad6-945b74cd4ae3","originalAuthorName":"China Post Box 435"},{"authorName":"Harbin Institute of Technology","id":"d34bec06-b6dd-4cab-8af3-52c9c1b66d68","originalAuthorName":"Harbin Institute of Technology"},{"authorName":"Harbin 150006","id":"c3bffc4c-f0b9-4291-be88-2b3b443801c7","originalAuthorName":"Harbin 150006"},{"authorName":"China","id":"44ff68cc-1101-4520-b6f3-9f3c989d2910","originalAuthorName":"China"}],"categoryName":"|","doi":"","fpage":"437","id":"3019dacd-f88f-40d8-8fc5-45d6a9a32387","issue":"12","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"e4a6dde4-9fcf-43ec-97df-9e965339ef74","keyword":"mechanical alloying","originalKeyword":"mechanical alloying"},{"id":"2be7aa2c-8eab-4bbf-9eab-77016d9e3992","keyword":"null","originalKeyword":"null"},{"id":"b54c8df2-b3c2-454f-ae0f-9e5259a81dd9","keyword":"null","originalKeyword":"null"},{"id":"02b5d596-0a36-46f1-87fd-d7efa725bf92","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1993_12_11","title":"SYNTHESIS OF Ni-Mo ALLOYS BY MECHANICAL ALLOYING","volume":"6","year":"1993"},{"abstractinfo":"在Ni-Mo合金镀液中添加Ce盐,制备了Ce盐修饰的Ni-Mo合金电极,研究了Ce对Ni-Mo合金电极析氢催化性能的影响,并测试研究了Ce对Ni-Mo合金镀层结构的影响.实验结果表明,镀液中添加少量的Ce盐并没有改变合金电极的结构,但是使镀层的晶粒细化,从而增大了电极的真实表面积,提高了Ni-Mo合金电极的析氢催化活性.","authors":[{"authorName":"刘萍","id":"571ad4da-2ebb-45f5-8330-63d513af8d0e","originalAuthorName":"刘萍"},{"authorName":"唐致远","id":"8bb0990f-190b-472d-b211-0d4649a4b46a","originalAuthorName":"唐致远"},{"authorName":"宋全生","id":"f69d2b98-a398-4db3-90bf-3fecc32f4b2b","originalAuthorName":"宋全生"}],"doi":"10.3969/j.issn.1001-3849.2007.03.004","fpage":"10","id":"d194bea9-913a-499e-a4cd-3e0f924d238c","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"c8e81d1d-59ab-4d4f-97cf-ed3169021364","keyword":"Ni-Mo合金电极","originalKeyword":"Ni-Mo合金电极"},{"id":"71688b03-185d-4ccc-b780-b1f9d61baab4","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"21bc5d04-d694-4294-a0fb-22a4ecd7fc48","keyword":"铈","originalKeyword":"铈"},{"id":"5f16eb6c-32a6-454d-8f86-dd3158e6e3a2","keyword":"析氢催化活性","originalKeyword":"析氢催化活性"}],"language":"zh","publisherId":"ddjs200703004","title":"铈对Ni-Mo合金电极析氢性能的影响","volume":"29","year":"2007"},{"abstractinfo":"用溶胶-凝胶法制备了La或Ce改性的0.3%Ni/TiO2(即La-Ni/TiO_2或Ce-Ni/TiO_2),考察了La-Ni/TiO_2或Ce-Ni/TiO_2在催化降解甲基橙水溶液过程中的重复利用性能,并用XRD、N_2吸附-脱附以及XPS等手段对催化剂进行了表征分析.研究表明,适宜La和Ce掺杂量(La/Ti、Ce/Ti摩尔比)分别为0.15%和0.1%,适宜焙烧温度为400℃.在酸性条件下(pH=3),La-Ni/TiO_2和Ce-Ni/TiO_2Ni/TiO2光降解甲基橙的能力相当,但La或Ce掺杂使Ni/TiO_2催化剂的重复使用能力提高.催化剂上存在低结合能的低价钛离子(如Ti~(3+)),低价钛离子的含量和结合能大小是衡量催化剂光催化降解活性的重要因素.可能是La或Ce使催化剂在使用过程中低价钛离子得到较好保留,从而使催化剂活性得到较好维持,催化剂重复使用性能提高.","authors":[{"authorName":"陈英","id":"87ab928b-5d59-4672-9e2a-e241c9ccda4a","originalAuthorName":"陈英"},{"authorName":"刘宝生","id":"32aa42cf-be8f-475d-9a32-d3263c94b2ba","originalAuthorName":"刘宝生"},{"authorName":"岑小龙","id":"c798b64e-2912-4611-b103-fb13030571b1","originalAuthorName":"岑小龙"}],"doi":"10.3969/j.issn.1004-0277.2010.01.009","fpage":"40","id":"79bbe3c8-763a-4e8d-86dd-0da62d5e23a4","issue":"1","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"5b9a88c0-248d-4198-b754-519848ed47f2","keyword":"Ni/TiO_2光催化剂","originalKeyword":"Ni/TiO_2光催化剂"},{"id":"b969c327-1242-47da-a847-0dd87ea22738","keyword":"La","originalKeyword":"La"},{"id":"19981949-11a1-4efb-82cc-113a56da8a1a","keyword":"Ce","originalKeyword":"Ce"},{"id":"255059c8-77b5-4cc5-913d-5558826dd224","keyword":"重复使用性能","originalKeyword":"重复使用性能"},{"id":"4df117e8-01cb-4ce0-a0a3-6136c26360d6","keyword":"XRD","originalKeyword":"XRD"},{"id":"75da73c4-3d7c-442f-a51a-c954aa22d5db","keyword":"XPS","originalKeyword":"XPS"},{"id":"44c26dec-aa53-412b-9c16-423300446980","keyword":"N_2吸附-脱附","originalKeyword":"N_2吸附-脱附"},{"id":"590b3e00-110b-4bbb-9aaa-124bbd90db41","keyword":"甲基橙","originalKeyword":"甲基橙"}],"language":"zh","publisherId":"xitu201001009","title":"稀土改性Ni/TiO_2光催化剂及其重复利用催化活性","volume":"31","year":"2010"},{"abstractinfo":"自制介孔碳(CMC)具有比传统活性碳(AC)更大的比表面积、孔径和孔体积,以其为载体,在浸渍液中加入螯合剂,采用等量浸渍法制备了Co-Mo/CMC和Ni-Mo/CMC催化剂,分别用于模型汽油和柴油加氢脱硫反应.结果表明,Co-Mo/CMC和Ni-Mo/CMC催化剂具有比Co-Mo/AC催化剂更好的织构性质和加氢脱硫活性.在模型汽油的加氢脱硫反应中,Co-Mo/CMC催化剂活性比工业催化剂Co-Mo/Al2O3高得多;而在模型柴油的加氢脱硫反应中,Ni-Mo/CMC催化剂活性也比工业催化剂FH-98高得多.","authors":[{"authorName":"石国军","id":"a86a96d4-b8e6-48ca-82a0-f6e96bbf2b4e","originalAuthorName":"石国军"},{"authorName":"赵鹬","id":"2d4e4d8b-858e-4552-86fb-75d8526e2440","originalAuthorName":"赵鹬"},{"authorName":"黄玉安","id":"714e062e-0570-49fb-82ad-921e59d0aaa1","originalAuthorName":"黄玉安"},{"authorName":"沈俭一","id":"8bfa6ef0-5bf8-4474-85d5-9a04ac6dc6ec","originalAuthorName":"沈俭一"}],"doi":"10.1016/S1872-2067(10)60094-0","fpage":"961","id":"6f240ad4-ba73-4d88-8d98-33d32eee0e8b","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"0280bee5-25b0-40a4-b8cf-23b895dc9a87","keyword":"介孔碳","originalKeyword":"介孔碳"},{"id":"bd67fd1e-2cec-4d19-bbd4-b873d6e208d6","keyword":"孔性质","originalKeyword":"孔性质"},{"id":"f77d47b5-235b-408d-bc61-466ea2616188","keyword":"加氢脱硫","originalKeyword":"加氢脱硫"},{"id":"6944ab1c-6360-4a43-b0b5-aba76ebb13bf","keyword":"钴","originalKeyword":"钴"},{"id":"91399119-a5fa-4413-abc6-4119f14e4b88","keyword":"钼","originalKeyword":"钼"},{"id":"aacfd095-0033-484a-b52d-b205675e8ccf","keyword":"镍","originalKeyword":"镍"},{"id":"add2e369-b844-4b2f-b0dd-641d296eca19","keyword":"噻吩","originalKeyword":"噻吩"},{"id":"f83fdf05-b2c6-4c68-85bb-1c71378db170","keyword":"二苯并噻吩","originalKeyword":"二苯并噻吩"}],"language":"zh","publisherId":"cuihuaxb201008014","title":"介孔碳担载的Co-MoNi-Mo加氢脱硫催化剂","volume":"31","year":"2010"}],"totalpage":8893,"totalrecord":88928}