{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用分子动力学方法模拟了碳纳米管/聚乙烯复合物的结构、热力学和力学特性,分析其随模拟温度和碳纳米管填充率的变化.模拟结果表明,碳纳米管/聚乙烯复合物为各向同性的无定形结构,聚乙烯和碳纳米管通过较强的范德华作用结合在一起,在聚乙烯基体作用下,碳纳米管壁上的碳原子排列的周期性下降,出现弯曲和褶皱.从能量上看,填充率较高的复合物更加稳定.碳纳米管/聚乙烯复合物具有比聚乙烯体系更高的等容热容和与聚乙烯体系相反的负值热压力系数,热容随碳纳米管填充率的变化较小,但随温度的升高而明显减小,具有显著的温度效应;热压力系数随温度的变化较小,温度稳定性比聚乙烯更好,但随填充率增加而减小.碳纳米管/聚乙烯复合物的力学特性表现出各向同性材料的弹性常数张量,弹性模量和泊松比比纯聚乙烯体系高得多,并且都随温度的升高和碳纳米管含量的降低而减小,说明加入碳纳米管可显著改善聚乙烯的力学性质.","authors":[{"authorName":"孙伟峰","id":"8e0703ac-2f1b-41d1-85d7-de14cdb2d837","originalAuthorName":"孙伟峰"},{"authorName":"高俊国","id":"5e67ddf9-90b0-422b-9613-043a1f9dd26b","originalAuthorName":"高俊国"},{"authorName":"郭宁","id":"bea5203c-f903-41ab-a370-31d7ab43b88d","originalAuthorName":"郭宁"}],"doi":"","fpage":"286","id":"14dc1ee1-4440-4dbb-85d3-8003b1b87a4e","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"4bf800a0-5932-4526-a6ff-c614cdacac7e","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"54010b42-2130-4136-b1ed-8595bf7bbf4a","keyword":"聚合物纳米复合物","originalKeyword":"聚合物纳米复合物"},{"id":"97afc8f9-e745-455c-944b-bcc7a575ca32","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"e41af551-0c5b-4dbd-874a-3236b066d097","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"1dbecb95-1009-4f06-8ae3-f6bf36056215","keyword":"热压力系数","originalKeyword":"热压力系数"}],"language":"zh","publisherId":"fhclxb201402004","title":"碳纳米管/聚乙烯复合物分子动力学模拟研究","volume":"31","year":"2014"},{"abstractinfo":"为了解不同的雷诺数和出流比情况下各种因素对压力损失系数的影响,对有侧流梯形扰流柱通道端壁的静压和压力损失系数进行了实验测量.结果表明:出流比对端壁的静压分布和压力损失有较大影响,雷诺数的影响较小.出流比不为1时,端壁表面静压沿径向变化较小,在实验段入口和出口处较大,在中间段略低;在弦向方向上,静压变化相对较为剧烈,从通道左边到右边的弦向出口,静压分布趋势是递减的,在扰流柱左边压力变化梯度较小,弦向出口附近压力变化梯度较大.出流比为1时,端壁静压的变化主要集中在弦向方向上,压力损失系数随雷诺数的增加而降低,但是变化幅度相对较小;压力损失系数随着出流比变化相对较大,压力损失系数随着出流比的增大而减小.","authors":[{"authorName":"王学文","id":"b550a856-110d-42e8-9592-5b435e38f89a","originalAuthorName":"王学文"},{"authorName":"朱惠人","id":"8c33c9ec-5ca4-4936-8425-3d036b3bfe16","originalAuthorName":"朱惠人"},{"authorName":"张丽","id":"ed345120-4fa7-4af2-8f62-27cce48ba976","originalAuthorName":"张丽"},{"authorName":"邓明春","id":"594e4cc5-ea15-4a78-8d79-a086dd5d757c","originalAuthorName":"邓明春"}],"doi":"","fpage":"15","id":"8fc99519-ed79-4a14-bd1f-847bd14e163d","issue":"4","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"14d11765-4fa2-4692-b7a3-d7639c749349","keyword":"扰流柱","originalKeyword":"扰流柱"},{"id":"498afb7f-c227-472e-8819-61ee49cbf725","keyword":"静压","originalKeyword":"静压"},{"id":"5eb83c83-56c8-4f10-bc65-9d5274e7cddb","keyword":"压力损失系数","originalKeyword":"压力损失系数"}],"language":"zh","publisherId":"wlcs200604006","title":"带侧流梯形通道扰流柱冷却结构压力系数的实验研究","volume":"24","year":"2006"},{"abstractinfo":"曳力系数是表征气固相互作用的基础性参数之一.常规的曳力系数测量主要采用重力沉降法,只适用于重颗粒、且表面光滑密实的情况,并不适用于像生物质这类非球形、轻质颗粒的曳力系数的测量.本文介绍一种非球形、轻质颗粒曳力系数的高速摄像测量方法,基于颗粒视频、图像的处理方法,分析在测量区域内颗粒的受力大小和迎风截面的变化.应用该方法测量两种典型球形、圆盘状颗粒的曳力系数,实验结果表明球形颗粒的测量结果与标准曳力曲线预测的结果变化趋势一致;对于圆盘状颗粒,其测量结果与非球形颗粒曳力系数的Hoizer经验公式计算值相比,存在20%的平均误差.","authors":[{"authorName":"陆勇","id":"2c5f4c82-883e-4dbf-a693-b134690185c8","originalAuthorName":"陆勇"},{"authorName":"宋振华","id":"ec13d35c-9af0-4c8e-94c0-db355d639a7d","originalAuthorName":"宋振华"},{"authorName":"钟文琪","id":"dd57f596-8cfc-44ac-8e65-d32aec3f86e7","originalAuthorName":"钟文琪"},{"authorName":"陈曦","id":"05be902b-a2e0-42c4-b86d-ef5e2a6e0199","originalAuthorName":"陈曦"},{"authorName":"任冰","id":"b67ab073-9d20-423f-b5ef-0ceb8bd4bf0b","originalAuthorName":"任冰"},{"authorName":"金保昇","id":"470d9e49-86aa-4582-bed7-5a1f4573064c","originalAuthorName":"金保昇"}],"doi":"","fpage":"351","id":"36d448f5-ae7a-425e-a1cb-068eb3a764cf","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d3ce5b90-42bb-4617-adaf-8a7fa7ba8758","keyword":"曳力系数","originalKeyword":"曳力系数"},{"id":"dcc0b95f-617d-45ad-aa38-ba0dc2965aa3","keyword":"非球形颗粒","originalKeyword":"非球形颗粒"},{"id":"728e9a92-4574-4bb1-baf6-9f1a3f262c80","keyword":"高速摄影","originalKeyword":"高速摄影"},{"id":"0df01a2a-b557-4d2d-9f40-7b217299242c","keyword":"图像处理","originalKeyword":"图像处理"}],"language":"zh","publisherId":"gcrwlxb201502027","title":"高速摄影法测量圆盘状颗粒曳力系数的方法研究","volume":"36","year":"2015"},{"abstractinfo":"本文使用常压非平衡等离子体技术制备了磁性液体,通过透射电镜分析可知纳米磁性颗粒的粒径为10nm左右.使用高精度的力敏传感器对制备的磁性液体进行了表面张力系数的研究.随着磁场强度的增加,磁性液体的表面张力增加;当磁场增加到一定程度时,表面张力的增加变得缓慢,这是由于磁性液体中颗粒的数量是有限的.","authors":[{"authorName":"李艳琴","id":"660ff709-0ed5-462e-9665-080dca8eede9","originalAuthorName":"李艳琴"},{"authorName":"李学慧","id":"e80acf11-e579-48c0-bfe3-c5d2d63e5db4","originalAuthorName":"李学慧"},{"authorName":"安宏","id":"7b9f5c5c-1a58-4df7-ad44-65fb80c31715","originalAuthorName":"安宏"},{"authorName":"部德才","id":"aaab6b56-d811-4e53-9fec-d1285123882f","originalAuthorName":"部德才"}],"doi":"","fpage":"8","id":"efb22c0b-6b2b-4f39-b901-af648f7c0644","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"0ebae260-9958-4d33-93a5-a74f4031473a","keyword":"磁性液体","originalKeyword":"磁性液体"},{"id":"ce7f6574-53ab-409b-8715-58be9803e359","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"683f7209-1458-4134-927d-f94add4a2e82","keyword":"表面张力系数","originalKeyword":"表面张力系数"}],"language":"zh","publisherId":"jsgncl200906003","title":"磁性液体的等离子体制备及表面张力系数研究","volume":"16","year":"2009"},{"abstractinfo":"采用板状刚玉、白刚玉细粉、电熔镁砂、α-Al2O3微粉等为原料,以铝硅凝胶粉为结合剂,制备了Al2O3-MgO浇注料,并浇注成型后于1 600℃×3h烧结;研究了Zr(OH)4添加量对Al2O3-MgO浇注料基质烧结性能、显微结构的影响,并引入多孔介质模型,探讨了基质阻力系数的变化规律.结果表明:适量Zr(OH)4能增大Al2O3-MgO浇注料基质的体积密度,降低显气孔率,缩小平均孔径,增大基质的粘性阻力系数;Zr(OH)4添加量为0.5%(质量分数)时,基质具有较佳的烧结性能(显气孔率24.5%,体积密度2.56 g·cm-3),较小的平均孔径(1.71 μm)且孔径分布均匀;Al2O3-MgO浇注料基质平均孔径对其粘性阻力系数的影响较显气孔率的影响更大.","authors":[{"authorName":"邹阳","id":"6e51af70-08a2-4d3d-b687-c6824feb9dc7","originalAuthorName":"邹阳"},{"authorName":"顾华志","id":"ceaeea7e-71ea-46f9-8ff1-be360064bd30","originalAuthorName":"顾华志"},{"authorName":"黄奥","id":"b32772d4-05b2-42ca-9ea2-836e1b9bf5ad","originalAuthorName":"黄奥"},{"authorName":"张美杰","id":"526c3613-8a7b-4a2f-83ff-86f74febb302","originalAuthorName":"张美杰"},{"authorName":"吉超","id":"92e307d3-abf1-4cf3-8d00-8a1751faaabc","originalAuthorName":"吉超"}],"doi":"","fpage":"77","id":"3268b3ed-f8e2-40b7-a186-85980aa8e780","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"515ec630-67ca-47a5-b689-035b2abfae92","keyword":"耐火材料","originalKeyword":"耐火材料"},{"id":"c71a67af-3dde-4e47-99c2-0497a77c0767","keyword":"Zr(OH)4","originalKeyword":"Zr(OH)4"},{"id":"82c57bc4-7b7d-458b-9af8-67da61912055","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"9d460c50-1959-48a6-9d79-f8f9891e19a4","keyword":"阻力系数","originalKeyword":"阻力系数"},{"id":"11782e39-4b85-485b-92db-0fe31df2f6d9","keyword":"孔径","originalKeyword":"孔径"}],"language":"zh","publisherId":"jxgccl201502017","title":"Zr(OH)4添加量对Al2O3-MgO浇注料基质显微结构和阻力系数的影响","volume":"39","year":"2015"},{"abstractinfo":"利用pVT100分析仪测得交联聚乙二醇的p-V-T数据,并应用Sanchez-Lacombe格子流体理论拟合出其pVT状态方程。同时计算出了交联聚乙二醇(PEG)的热膨胀系数α,等温压缩系数β和热压系数γ,为其在生物化学方面的生产、加工和应用提供了一定的依据。","authors":[{"authorName":"徐婷","id":"a774faac-fb20-446c-8ff5-fdcd8d8f422f","originalAuthorName":"徐婷"},{"authorName":"安立佳","id":"fd7d61b6-3755-40d8-912d-d2646d463742","originalAuthorName":"安立佳"},{"authorName":"姬相玲","id":"8ac5eeb3-8380-4cbe-b098-3d012fd6137a","originalAuthorName":"姬相玲"},{"authorName":"姜炳政","id":"7a8dac89-ad5d-410b-b1e6-b818362aadae","originalAuthorName":"姜炳政"},{"authorName":"杨剑","id":"c167fb91-49f4-407b-934f-e7ad984b7b4e","originalAuthorName":"杨剑"}],"doi":"","fpage":"117","id":"26e2db43-6dca-4c32-96f4-b8cea023f784","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"539a22ed-b098-42b9-acbf-83d11e05cfdc","keyword":"pVT数据","originalKeyword":"pVT数据"},{"id":"d232f3cb-710e-4c0b-80b0-77684723c791","keyword":"交联聚乙二醇","originalKeyword":"交联聚乙二醇"},{"id":"a6b53398-f356-4e5c-b72e-28705ae1a0c4","keyword":"Sanchez-Lacombe格子流体理论","originalKeyword":"Sanchez-Lacombe格子流体理论"},{"id":"b2b37e99-cba4-4e2c-addc-b883fdce9b49","keyword":"pVT状态方程","originalKeyword":"pVT状态方程"},{"id":"bbb2cb2a-586e-485b-9433-d4f771467e32","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"698d7861-01ae-47bd-9603-1de3da7152f4","keyword":"等温压缩系数","originalKeyword":"等温压缩系数"},{"id":"b2aa5bf8-c4bb-42eb-9dfd-c09ee95a86f0","keyword":"热压系数","originalKeyword":"热压系数"}],"language":"zh","publisherId":"gfzclkxygc200101030","title":"利用pVT分析仪测定交联PEG的热膨胀系数、等温压缩系数和热压系数","volume":"17","year":"2001"},{"abstractinfo":"讨论了一种表面张力测量方法一轮廓曲线吻合法.它是一种应用计算机技术,用数 字图像信息处理液滴轮廓的方法.应用数字图像测量和信息处理技术,将置于氮化硼水平平板 上的Li2B4O7+KNbO3液滴的轮廓图像记录在录像带上,然后转换成数字图像数据,并与理论 方程的数值解吻合,求得表面张力系数.用这种方法侧得的Li2B4O7+KNbO3溶液的表面张力 温度系数和表面张力溶质系数分别为 γΤ(mN/m)=210+0.15(T-900℃), 900℃≤ T≤1000℃; γc(mN/m)=229-0.45(CKN-10wt%), 10wt%≤ CKN ≤30wt%","authors":[{"authorName":"金蔚青","id":"773bd79e-aebe-4248-8004-6c7175597d0e","originalAuthorName":"金蔚青"},{"authorName":"长岛敏夫","id":"8ef66532-3ea1-4add-91a7-f1780d292cdb","originalAuthorName":"长岛敏夫"},{"authorName":"依田真一","id":"f5361b3d-5cb2-46b5-85ef-5f45d098144b","originalAuthorName":"依田真一"},{"authorName":"蒋元方","id":"777d436f-87c1-4d2c-aa72-184ff73b67a8","originalAuthorName":"蒋元方"},{"authorName":"蔡丽霞","id":"5f63ec64-cbfb-4bce-8291-a93d120a2d16","originalAuthorName":"蔡丽霞"},{"authorName":"潘志雷","id":"ada3e629-0030-4ce2-b475-6aae901e5821","originalAuthorName":"潘志雷"}],"categoryName":"|","doi":"","fpage":"419","id":"5c0a430a-243d-4e69-b839-98356ac2a978","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c38cf87b-bc7a-44ac-8bce-0bb7e63b04d7","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"20ca3840-d775-4ee8-80fb-78fdcdea9572","keyword":" sessile drop","originalKeyword":" sessile drop"},{"id":"55eac5b4-ea21-4aab-9e18-ecba2c596a54","keyword":" contour curve fitting method","originalKeyword":" contour curve fitting method"},{"id":"7a1e0bf0-81a5-41b0-ae08-8cd3d4adecbe","keyword":" Li2B4O7·KNbO3 solution","originalKeyword":" Li2B4O7·KNbO3 solution"}],"language":"zh","publisherId":"1000-324X_2001_3_9","title":"应用轮廓吻合法测量Li2B4O7·KNbO3溶液的表面张力系数","volume":"16","year":"2001"},{"abstractinfo":"讨论了一种表面张力测量方法一轮廓曲线吻合法。它是一种应用计算机技术,用数字图像信息处理液滴轮廓的方法。应用数字图像测量和信息处理技术,将置于氮化硼水平平板上的Li2B4O7+KNbO3液滴的轮廓图像记录在录像带上,然后转换成数字图像数据,并与理论方程的数值解吻合,求得表面张力系数。用这种方法侧得的Li2B4O7+KNbO3溶液的表面张力温度系数和表面张力溶质系数分别为γT(mN/m)=210+0.15(T-900℃),900℃ T 1000℃;γc(mN/m)=229-0.45(CKN--10wt%),10wt% CKN 30wt%。","authors":[{"authorName":"金蔚青","id":"cb48eac4-1313-4488-b4dd-ead2ddab0d58","originalAuthorName":"金蔚青"},{"authorName":"蔡丽霞","id":"ce0224ef-31d1-447b-baff-d5ae353fda62","originalAuthorName":"蔡丽霞"},{"authorName":"潘志雷","id":"270a72fc-b8b1-4917-abd9-234ef89fdc90","originalAuthorName":"潘志雷"},{"authorName":"长岛敏夫","id":"51b2ebba-a0df-41fa-8b4f-99471d369a40","originalAuthorName":"长岛敏夫"},{"authorName":"蒋元方","id":"aecbd550-f6f1-4cd5-bedc-93afaf4b2839","originalAuthorName":"蒋元方"},{"authorName":"依田真一","id":"17787286-f52e-48cd-8445-21328abf0f45","originalAuthorName":"依田真一"}],"doi":"10.3321/j.issn:1000-324X.2001.03.006","fpage":"419","id":"93431990-01c0-4cf4-bc27-1856bbb005c4","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"92209ce0-ea5c-41f4-9858-d2e0db9c3089","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"503ebeb0-1d84-4d32-ab77-fa802182679b","keyword":"静止液滴","originalKeyword":"静止液滴"},{"id":"089fcf98-1824-4551-9798-949519dd1067","keyword":"轮廓曲线吻合法","originalKeyword":"轮廓曲线吻合法"},{"id":"abb8aa71-8970-4d69-8506-d32fb57074c0","keyword":"Li2B4O7·KNbO3溶液","originalKeyword":"Li2B4O7·KNbO3溶液"}],"language":"zh","publisherId":"wjclxb200103006","title":"应用轮廓吻合法测量Li2B4O7·KNbO3溶液的表面张力系数","volume":"16","year":"2001"},{"abstractinfo":"从理论分析入手,结合工程实验研究了在热压罐工艺中成型压力改善框架式模具温度场分布的均匀性和缩短热历程升温阶段时间.","authors":[{"authorName":"王永贵","id":"3f358069-3e69-42f4-bbce-eea73824f5d6","originalAuthorName":"王永贵"},{"authorName":"梁宪珠","id":"9d74693c-ab88-41ce-91f1-76e1903ded86","originalAuthorName":"梁宪珠"}],"doi":"10.3969/j.issn.1003-0999.2009.04.019","fpage":"70","id":"734ed3de-f7ce-40a2-b09e-adc9a33a301b","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3606cec4-e807-42cd-bb81-7a1b360ef320","keyword":"热压罐工艺","originalKeyword":"热压罐工艺"},{"id":"453ead88-519f-4590-b326-012e2dc1befb","keyword":"成型压力","originalKeyword":"成型压力"},{"id":"04288271-5904-4cf8-97ab-b4d80ee759a5","keyword":"框架式模具","originalKeyword":"框架式模具"},{"id":"ba8dbe63-bea7-4842-a3cb-afae28610014","keyword":"温度场","originalKeyword":"温度场"}],"language":"zh","publisherId":"blgfhcl200904019","title":"热压罐工艺的成型压力对框架式模具温度场的影响","volume":"","year":"2009"},{"abstractinfo":"采用玻璃纤维织物/环氧树脂E51预浸料研究热压罐工艺树脂压力在线测试系统适用性,分析了树脂黏度对测试系统动态反应特性的影响,进而测试了热压罐工艺零吸胶条件下等厚、非等厚及L形预浸料铺层内部的树脂压力,并与理论模型计算树脂压力对比,以分析测试系统的准确性.结果表明:树脂黏度明显影响系统的动态反应特性,当树脂黏度低于25 Pa·s时树脂压力测试系统具有较高的动态反应特性,满足复合材料内部树脂压力测试需求;对于所研究的各种形式的预浸料铺层,树脂压力测试值与理论值有很好的一致性,当热压罐压力达到0.5 MPa,相对误差约为2%,验证了系统的准确性.","authors":[{"authorName":"辛朝波","id":"64422fd1-56d8-4fd5-9afb-3d458a6a97f9","originalAuthorName":"辛朝波"},{"authorName":"徐吉峰","id":"84e3badb-5320-4aac-ae06-9af312c57b57","originalAuthorName":"徐吉峰"},{"authorName":"顾轶卓","id":"15ba2022-c1f8-41d0-8dd4-63ab289977d7","originalAuthorName":"顾轶卓"},{"authorName":"李敏","id":"586a6637-f74b-49c9-9dbd-2a902f388551","originalAuthorName":"李敏"},{"authorName":"张佐光","id":"37b15bb6-15db-4128-b52b-0f561edaaa3e","originalAuthorName":"张佐光"}],"doi":"","fpage":"74","id":"06765653-dcb9-4f20-aade-fd8dbd82f279","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"bf4e3ebe-007b-49ed-99b9-7f2773012d71","keyword":"热压罐工艺","originalKeyword":"热压罐工艺"},{"id":"3368450d-59cf-4f43-8286-2418b7826c20","keyword":"预浸料铺层","originalKeyword":"预浸料铺层"},{"id":"0a13fd4a-48c2-4c20-9dd2-9887df698ba6","keyword":"树脂压力","originalKeyword":"树脂压力"},{"id":"d9b63c2e-d015-4965-92c5-93070c246eb4","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"43f5bd36-4edb-4c33-b958-15c7c5cf6acf","keyword":"在线监测","originalKeyword":"在线监测"}],"language":"zh","publisherId":"fhclxb201305012","title":"热压罐工艺树脂压力测试系统适用性实验研究","volume":"30","year":"2013"}],"totalpage":1891,"totalrecord":18909}