{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为研究填料对橡胶沥青胶浆高低温性能的影响,选取矿粉和水泥作为填料,制备不同粉胶比(矿粉为0.25,0.4,0.6和0.8;水泥为0.4,0.6)的橡胶沥青胶浆.通过蠕变恢复实验和弯曲梁流变实验对橡胶沥青胶浆的高温性能低温性能进行研究.结果表明,随着粉胶比的增加,矿粉和水泥均能使橡胶沥青胶浆的高温性能得到提高,并且矿粉比水泥的改善效果好;随着粉胶比的增加,矿粉橡胶沥青胶浆和水泥橡胶沥青胶浆的低温性能均逐渐降低,在低温-12和-18℃时,矿粉使橡胶沥青胶浆的低温性能降幅更大.为了均衡橡胶沥青胶浆的高低温性能,矿粉橡胶沥青胶浆的最佳粉胶比范围宜为0.4~0.6.","authors":[{"authorName":"徐波","id":"1e869448-f599-46e2-82cc-923ea4d984b3","originalAuthorName":"徐波"},{"authorName":"刘运新","id":"a95a9fe4-4263-4f4a-9a20-3379e5aa1613","originalAuthorName":"刘运新"},{"authorName":"王英","id":"2d5f0c28-0ad1-4209-8070-dd98e3edc8c2","originalAuthorName":"王英"}],"doi":"10.3969/j.issn.1001-9731.2016.01.22","fpage":"1106","id":"caa198d7-4d50-4beb-af28-051c64f761db","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6b0e259d-d9d4-4e29-8073-171131a10e72","keyword":"橡胶沥青胶浆","originalKeyword":"橡胶沥青胶浆"},{"id":"4b338ab5-1d7d-4af5-b485-49352feeefaa","keyword":"粉胶比","originalKeyword":"粉胶比"},{"id":"59bb5628-3bb9-4d27-a337-22842c55759f","keyword":"高温性能","originalKeyword":"高温性能"},{"id":"38b70692-1c50-41d2-b0bc-81151553acf0","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"gncl201601022","title":"填料对橡胶沥青胶浆高低温性能的影响","volume":"47","year":"2016"},{"abstractinfo":"研究了旨在提高硅橡胶/玻璃布粘接性能的玻璃布表面处理及硅橡胶/玻璃布复合材料在宽广温度范围(-100~+100 ℃)的力学性能.结果表明,KH550/A151和间苯二酚/A151是玻璃布的有效表面处理剂;经玻璃布增强后可大幅度提高硅橡胶力学性能;复合材料低温性能受硅橡胶低温性能的影响显著.","authors":[{"authorName":"宋义虎","id":"293641d8-4066-4a8b-8719-40a421a25108","originalAuthorName":"宋义虎"},{"authorName":"魏伯荣","id":"c39a60f0-0a34-439b-be9e-0a1f88670d4f","originalAuthorName":"魏伯荣"}],"doi":"","fpage":"126","id":"a7a6b1c8-a799-4079-b129-3f92a63aaba1","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9e278c48-bd88-44d1-b669-318794c0da54","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"b3d70307-4f19-4d0c-87c1-3f4af2888497","keyword":"玻璃布","originalKeyword":"玻璃布"},{"id":"a9b472c9-2dd5-4fd8-a54d-0d34b1c3f35b","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"9768f95d-4386-4385-96fe-a4cc1d12a17c","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"gfzclkxygc199906037","title":"硅橡胶与玻璃布的复合及复合材料的低温性能","volume":"15","year":"1999"},{"abstractinfo":"基于黏弹性理论,对不同质量分数(0.5 w t%,1.0 w t%,1.5 w t%,2.0 w t%)的多聚磷酸改性沥青及基质沥青进行低温弯曲流变试验(BBR),结合 Burgers 模型对低温弯曲梁流变试验得到的蠕变数据进行非线性拟合,利用Burgers模型的四个参数(E1、η1、E2、η2分别是 Maxwell和Kelvin模型中弹性模量和黏性系数)确定出低温性能指标,对多聚磷酸改性沥青低温性能进行分析。结果表明:多聚磷酸的添加使沥青中的黏性和弹性都得到了一定的改善,沥青中松弛时间减少,储存能减少,耗散能增加,应力松弛能力得到提高。在相同温度下,多聚磷酸改性沥青延缓了沥青进入蠕变稳定期的时间,但随着温度的降低,达到蠕变稳定期的时间缩短。多聚磷酸改性剂的添加可以提高沥青低温性能,且随质量分数的增加,低温改善效果更好;但随着温度的降低,多聚磷酸对沥青的低温改善程度减小,且不同质量分数对其影响的差异也减小,在-24℃以上适合使用多聚磷酸改性,而在-24℃以下掺入多聚磷酸改性沥青意义不大。","authors":[{"authorName":"王岚","id":"35c67c3b-eca9-4380-b3d7-9225b390ece6","originalAuthorName":"王岚"},{"authorName":"王子豪","id":"fde2c6f8-6488-4db7-b468-a6f272d476c7","originalAuthorName":"王子豪"},{"authorName":"李超","id":"493dcfcf-682e-498e-948e-1a9eff32818a","originalAuthorName":"李超"}],"doi":"10.13801/j.cnki.fhclxb.20160413.003","fpage":"322","id":"6c0b8d93-259c-410b-a4fc-7b5271dc1f10","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ed7a3506-db9e-4031-b500-474de52cca76","keyword":"多聚磷酸改性沥青","originalKeyword":"多聚磷酸改性沥青"},{"id":"60102e65-3022-44da-bf55-2a96b7e9e918","keyword":"黏弹性","originalKeyword":"黏弹性"},{"id":"88185610-109a-436c-becc-73f9bd276c4e","keyword":"弯曲流变试验","originalKeyword":"弯曲流变试验"},{"id":"02801ef3-9b18-43ae-a735-e6b74afda694","keyword":"Burgers模型","originalKeyword":"Burgers模型"},{"id":"81ee062e-2aa8-4f88-898f-e147cb342b14","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"fhclxb201702013","title":"基于黏弹性理论的多聚磷酸改性沥青低温性能","volume":"34","year":"2017"},{"abstractinfo":"为研究胶乳掺量对乳化沥青冷再生混合料低温性能的影响,本文在不同低温温度下,对不同胶乳掺量(0~4.5%)的乳化沥青冷再生混合料的弯拉强度、弯拉劲度模量以及弯拉应变进行了测试,利用重复加载试验模拟路面实际状况进行验证.结果表明,随着胶乳掺量的增加,其乳化沥青冷再生混合料的弯拉强度、弯拉劲度模量随之减小,弯拉应变随之增大,具有明显的规律;经重复加载试验验证,当胶乳掺量为3%时,乳化沥青冷再生混合料具有较好的低温性能.","authors":[{"authorName":"韩庆奎","id":"f010f791-0e5d-4a8f-acaa-1be77e6fda1f","originalAuthorName":"韩庆奎"},{"authorName":"李晓民","id":"78232c73-0c31-492a-a88b-bf5a6ca693dd","originalAuthorName":"李晓民"},{"authorName":"魏定邦","id":"dafb2163-f4a7-4db0-aa2e-875bf955c4b0","originalAuthorName":"魏定邦"}],"doi":"","fpage":"3197","id":"7c6bf42d-4614-43d3-b552-e6365d430e15","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f5078b60-2e78-4eae-b7df-bf07b63a0825","keyword":"胶乳掺量","originalKeyword":"胶乳掺量"},{"id":"86bba628-1836-47d9-9f03-3a7497452e22","keyword":"乳化沥青","originalKeyword":"乳化沥青"},{"id":"6832ad4f-f6e9-4f7d-b690-791084691e4b","keyword":"冷再生混合料","originalKeyword":"冷再生混合料"},{"id":"d44e156e-edd6-40da-8987-dda6cd4540d3","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"gsytb201511023","title":"胶乳掺量对乳化沥青冷再生混合料低温性能的影响研究","volume":"34","year":"2015"},{"abstractinfo":"为研究不同TLA掺量对湖沥青改性沥青高温、低温性能的影响,对TLA掺量为15%、25%、35%的湖沥青改性沥青分别采用动态剪切流变试验、蠕变及蠕变恢复试验来研究其高温性能;采用延度试验和BBR试验研究其低温性能.试验结果表明:老化前的湖沥青改性沥青以及RTFO老化后的湖沥青改性沥青的车辙因子G*/Sinδ值和破坏温度(fail temperature)都得到较大的提高,TLA掺量为35%比掺量为15%的湖沥青改性沥青的PG分级至少提高一个高温等级;随着TLA掺量的增加,湖沥青改性沥青的零剪切粘度逐渐变大,高温性能得到显著改善;但是湖沥青改性沥青的延度值和蠕变速率m却在减小,蠕变劲度s值在不断增大,表明TLA的加入对其低温性能是不利的.综合考虑高温、低温性能,建议TLA的合理掺量控制在25%~35%之间.","authors":[{"authorName":"梁星敏","id":"46911937-b651-439f-b466-02370e0e0004","originalAuthorName":"梁星敏"},{"authorName":"黄康旭","id":"fd70ac56-e628-4fa8-a730-a9eb1b8f1138","originalAuthorName":"黄康旭"},{"authorName":"朱林","id":"2afe4508-c3ee-44f0-8d82-ec7a1e00fb52","originalAuthorName":"朱林"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.04.021","fpage":"614","id":"f70f4550-5783-4b17-bc8e-f0b3954e8510","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"661fdeab-31b5-42a6-afc2-22da1b71b5f7","keyword":"TLA","originalKeyword":"TLA"},{"id":"6897077f-6d9e-4b12-99e6-3732f70bfbdd","keyword":"湖沥青改性沥青","originalKeyword":"湖沥青改性沥青"},{"id":"90f15271-e825-4603-887f-88b72403d80b","keyword":"高温性能","originalKeyword":"高温性能"},{"id":"77e81261-b309-4067-90f8-dd8568ccab4e","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"clkxygc201604021","title":"TLA掺量对湖沥青改性沥青高、低温性能的影响","volume":"34","year":"2016"},{"abstractinfo":"针对玻璃态转变温度Tg难以实测及现有计算方法原理不清晰、参数标准差偏大的问题,利用水平移位因子lg(αT),根据Williams-Landel-Ferry方程(简称WLF方程)推导了玻璃态转变温度的求解公式:任选2个参考温度T1、T2进行移位因子计算,通过线性回归得到各自参数C1、C2、C1'、C2’;将2个参考温度下的移位因子相减,推算出Tg求解公式.利用该方法计算了3种基质沥青和2种SBS改性沥青材料的Tg,并使用对应的沥青混合料进行了低温弯曲试验验证.结果表明,该计算方法原理清晰、过程简单,可以准确地计算玻璃态转变温度Tg,有效评价沥青材料的低温性能.","authors":[{"authorName":"黄优","id":"7c30c564-e982-492d-b35c-a0ca58f39993","originalAuthorName":"黄优"},{"authorName":"刘朝晖","id":"4db07b17-e72f-449e-afaf-4a6c04bfabbc","originalAuthorName":"刘朝晖"},{"authorName":"李盛","id":"d6caf96f-481e-46a5-a886-0fb7c494fc53","originalAuthorName":"李盛"}],"doi":"10.11896/j.issn.1005-023X.2016.16.030","fpage":"141","id":"03935165-d959-454b-bcdc-c40cc2422ae1","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c2a10d41-5009-4dcc-83d3-04d0caf61c55","keyword":"道路工程","originalKeyword":"道路工程"},{"id":"3c2c306d-2c3a-491a-bc97-461d934343e3","keyword":"沥青材料","originalKeyword":"沥青材料"},{"id":"b7ccdd11-2a2c-44c1-a0ad-75d9be4febae","keyword":"玻璃态转变温度","originalKeyword":"玻璃态转变温度"},{"id":"4f45a687-5154-4805-b92d-e780738da2e2","keyword":"WLF","originalKeyword":"WLF"},{"id":"b3c6883f-9d45-4e31-96c0-a9c12a98493d","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"cldb201616030","title":"沥青材料的玻璃态转变温度求解及低温性能分析","volume":"30","year":"2016"},{"abstractinfo":"采用均匀设计的方法设计了无钕贮氢合金的A侧组元La、Ce和Pr,用三电极的方法测试不同成分贮氢合金在-30℃和-40℃下的放电性能、合金的交换电流密度、对称因子以及氢在贮氢合金中的扩散系数,用回归分析方法分析了稀土组元对贮氢合金低温性能的影响.研究表明,在-30℃下0.4C放电容量及在-40℃下0.2C放电容量与铈含量的平方正相关;在-30℃下0.2C放电及在-40℃下0.1C放电,合金放电容量与镧和铈乘积及镧含量的平方正相关,与镧的含量负相关;在-30℃下0.1C放电,合金放电容量与镧和铈乘积、镧含量的平方和铈的含量正相关.贮氢合金的低温性能受氢扩散控制.","authors":[{"authorName":"陶明大","id":"73caa3f8-5bab-4931-8bc3-ad2fbdeb350d","originalAuthorName":"陶明大"},{"authorName":"陈云贵","id":"6d9dbd85-a608-4c44-a9c2-e80979513fec","originalAuthorName":"陈云贵"},{"authorName":"付春艳","id":"097a7aa7-41e7-41ab-a869-6caa5616acc2","originalAuthorName":"付春艳"},{"authorName":"吴朝玲","id":"c57b92f9-667f-4aac-95d5-c7f60e39fe6a","originalAuthorName":"吴朝玲"},{"authorName":"涂铭旌","id":"9910ed46-d6ce-4042-88f6-ebee97c61a06","originalAuthorName":"涂铭旌"}],"doi":"","fpage":"1915","id":"64535e67-460f-464e-8a9c-795ffa609a5c","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"de1ae4c9-15b6-4f21-895a-5c50a6d2794a","keyword":"稀土","originalKeyword":"稀土"},{"id":"6be0f69d-a6b5-440f-8702-c8fe3539dfe1","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"58205413-5466-4dd3-a276-10f2eec8451b","keyword":"低温性能","originalKeyword":"低温性能"},{"id":"457ffac1-8434-45a3-b326-70dc9ce4f97a","keyword":"回归分析","originalKeyword":"回归分析"}],"language":"zh","publisherId":"gncl2004z1533","title":"稀土组元对AB5型无钕贮氢合金低温性能的影响","volume":"35","year":"2004"},{"abstractinfo":"制约MH/Ni电池低温性能的主要因素是贮氢合金负极材料.综述了低温贮氢合金负极材料的研究进展,分析了影响电极材料低温性能的各方面因素,给出了提高其低温性能的具体方法,其中包括元素替代、结构设计及制备工艺等的运用.这些将有益于今后研制和生产适用于宽温度范围的MH/Ni电池负极材料.","authors":[{"authorName":"董桂霞","id":"1dc91ec6-4e46-4b56-b852-e90a2427358e","originalAuthorName":"董桂霞"},{"authorName":"朱磊","id":"c6e0726c-9911-40be-9972-7179af8af28a","originalAuthorName":"朱磊"},{"authorName":"杜军","id":"0fd79b16-acad-4dc3-980d-ff365d480a57","originalAuthorName":"杜军"},{"authorName":"吴伯荣","id":"bec586ca-cdad-44d8-a330-6882223051e8","originalAuthorName":"吴伯荣"},{"authorName":"陈晖","id":"3410d67c-1c9b-4828-bb35-ea851a3ac882","originalAuthorName":"陈晖"},{"authorName":"简旭宇","id":"f20f32d3-ee23-42e9-b9f7-1ebaa4373073","originalAuthorName":"简旭宇"},{"authorName":"刘明义","id":"ca2dffb6-418f-4648-a69d-190dcdac5aed","originalAuthorName":"刘明义"}],"doi":"","fpage":"104","id":"62a2197c-6f06-4dd4-9222-b25c8d2fa1ac","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bd849416-9315-4865-8b24-5237ce79e56e","keyword":"MH/Ni电池","originalKeyword":"MH/Ni电池"},{"id":"18f54fe2-aae7-4f5f-90cc-b221d8583c97","keyword":"负电极","originalKeyword":"负电极"},{"id":"23a54307-95ec-43a8-ba40-b6ebf5fa7c2d","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"cb1c1190-c91c-4a17-a546-8b611f931690","keyword":"低温性能","originalKeyword":"低温性能"}],"language":"zh","publisherId":"cldb200510028","title":"低温MH/Ni电池负极材料的研究方法","volume":"19","year":"2005"},{"abstractinfo":"研制了一种低温环境下的材料力学特性试验装置.该装置可提供-78℃~-l96℃的环境温度,利用该系统对容器用钢16Mn的抵温拉伸性能进行实验研究.结果表明,低温试验装置及系统稳定可靠,测试数据准确.","authors":[{"authorName":"刘兴秋","id":"d4d1a910-74b6-444b-89ec-25c614a12f1a","originalAuthorName":"刘兴秋"},{"authorName":"郭永良","id":"bcb69e96-78a0-47fb-8231-0f6410832826","originalAuthorName":"郭永良"},{"authorName":"崔约贤","id":"d4f4cf76-df91-49b9-b0e0-dc12a7d06af6","originalAuthorName":"崔约贤"},{"authorName":"张新梅","id":"88abcdd1-202b-4269-aee4-edb0f5244fb8","originalAuthorName":"张新梅"}],"doi":"10.3969/j.issn.1001-0777.2001.02.011","fpage":"33","id":"08c5fbfd-ce82-4c43-92be-78d29940fe1a","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"9b745a75-2b9b-4ff0-941a-18efe494bc88","keyword":"低温性能","originalKeyword":"低温性能"},{"id":"da4d9636-c558-437e-95da-d1c84d0e3e7c","keyword":"试验装置","originalKeyword":"试验装置"},{"id":"9e1b7721-f859-4e67-97fa-c05384c404c8","keyword":"研究应用","originalKeyword":"研究应用"}],"language":"zh","publisherId":"wlcs200102011","title":"材料低温性能试验装置的研制与应用","volume":"","year":"2001"},{"abstractinfo":"研究了FS6265氟硅橡胶的低温拉伸性能.FS6265氟硅橡胶随温度的降低,拉伸强度从30℃时的8.8MPa增大到-70℃时的29.8MPa.同时,拉断伸长率则先增加后降低,并且在-30℃时达到最大值:268%.但当温度低于-50℃时,拉断伸长率急剧下降,由150%降至-60℃时的29%,几乎失去了橡胶弹性.","authors":[{"authorName":"苏正涛","id":"5f32cc33-dd0b-418d-b058-8b3e92d91599","originalAuthorName":"苏正涛"},{"authorName":"黄艳华","id":"7f3bbd83-9a43-4c41-8d87-e44a1d4a2bbc","originalAuthorName":"黄艳华"},{"authorName":"王鹏","id":"9492d5d1-e49e-4930-9648-6e0d78a93c4b","originalAuthorName":"王鹏"},{"authorName":"米志安","id":"00f63898-c151-4f28-a341-c75fd1dc996d","originalAuthorName":"米志安"},{"authorName":"王景鹤","id":"240318b0-d280-4593-b81e-0e021419b5cf","originalAuthorName":"王景鹤"}],"doi":"10.3969/j.issn.1005-5053.2011.z1.053","fpage":"240","id":"4cc48903-d1cd-48fa-86b2-4d14f36528ca","issue":"z1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"80de41a3-24be-4df4-85ba-a5cb1bd8ea5e","keyword":"氟硅橡胶","originalKeyword":"氟硅橡胶"},{"id":"cfdae798-8b33-4c6a-926a-8c925ebd0443","keyword":"低温性能","originalKeyword":"低温性能"},{"id":"54365c53-da5d-41b3-805b-f34d103bf977","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"hkclxb2011z1053","title":"氟硅橡胶的低温拉伸性能研究","volume":"31","year":"2011"}],"totalpage":9052,"totalrecord":90512}