{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"根据改进分析型嵌入原子模型(MAEAM),通过计算钒的总能量随温度的变化关系确定其熔点为2160±10 K,与实验值(2175 K)一致.运用分子动力学方法(MD)从原子面密度函数、面结构因子、面径向分布函数三个方面研究了V(111)晶面的预熔现象和熔化情况,发现V(111)面在800 K左右开始出现预熔.","authors":[{"authorName":"阳喜元","id":"65cb1c41-93ef-46f7-be84-0bfe3daab678","originalAuthorName":"阳喜元"},{"authorName":"袁晓俭","id":"e393805e-c81d-4d59-822f-0c9c2d615543","originalAuthorName":"袁晓俭"},{"authorName":"胡望宇","id":"3c6371b5-46a6-4767-b6ac-bef197a40c8f","originalAuthorName":"胡望宇"}],"doi":"","fpage":"562","id":"8d6f04bb-91a0-4854-a366-06f713d7c28a","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"abc904ec-8a9b-4b13-abb0-7df11bfcc85e","keyword":"预熔","originalKeyword":"预熔"},{"id":"ccb7489f-58cd-45ef-bb56-c1bed8b0a0db","keyword":"熔化","originalKeyword":"熔化"},{"id":"09a9f071-b55d-4781-b286-329a92dbe0a1","keyword":"V(111)面","originalKeyword":"V(111)面"},{"id":"5b3f1370-3c92-4215-807e-6ad944fe9a23","keyword":"MAEAM","originalKeyword":"MAEAM"},{"id":"1879ca0b-0fb4-4233-9a25-7095712a163a","keyword":"分子动力学方法(MD)","originalKeyword":"分子动力学方法(MD)"}],"language":"zh","publisherId":"xyjsclygc200604013","title":"用分子动力学模拟研究V(111)晶面的熔化机理","volume":"35","year":"2006"},{"abstractinfo":"分子动力学(MD)作为一种成熟的微观模拟方法,在微观研究领域已经得到广泛应用.耗散粒子动力学(DPD)是以MD为基础衍生出的介观模拟方法,突破了MD对计算能力要求过高的限制,实现了更大尺度上的模拟.在对1873K液态纯铁进行MD模拟的基础上,将MD体系与DPD体系进行了对应,实现了在液态纯铁体系中进行DPD模拟.","authors":[{"authorName":"沈通","id":"580639f9-963e-4533-9c0f-204cce853784","originalAuthorName":"沈通"},{"authorName":"吴永全","id":"dde9a231-1c37-443e-b4d5-ef7c0d18ea86","originalAuthorName":"吴永全"},{"authorName":"蒋国昌","id":"85f0a490-b5ad-4ee9-addd-3ce603647bb3","originalAuthorName":"蒋国昌"}],"doi":"10.3969/j.issn.1001-7208.2008.06.006","fpage":"23","id":"b207f8e7-f5a9-414b-a950-c5662ce08a62","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"1e44155d-7f2b-4f30-a6b2-7cb341c91067","keyword":"液态纯铁","originalKeyword":"液态纯铁"},{"id":"21d3a9df-129a-4cc9-b748-6b7ce9bd473d","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"475c12f6-2fe2-45e1-bf01-d537214172bc","keyword":"耗散粒子动力学","originalKeyword":"耗散粒子动力学"}],"language":"zh","publisherId":"shjs200806006","title":"1873K液态纯铁的分子动力学和耗散粒子动力学研究","volume":"30","year":"2008"},{"abstractinfo":"采用分子动力学模拟方法,应用Buckingham经验势模型,模拟纤锌矿相GaN的薄膜晶格生长.研究了GaN薄膜生长的早期阶段的形貌特点、生长规律、表面结构及动力学特性.模拟发现,N原子与Ga原子按照晶格特征吸附在衬底上,作层状分布趋势并且薄膜层从下到上晶态特征逐渐减弱.观察每层沉积原子数、空位比、沉积原子团簇质心高度与沉积原子均方位移随时间的变化规律,发现了随着时间步数增加,原子团簇逐渐达到稳定,在5000步时前3层都达到了较稳定状态,且N原子比Ga原子能更快地找到平衡位置.","authors":[{"authorName":"陈智辉","id":"f3289930-4c1e-4075-b590-ad5e4c667a44","originalAuthorName":"陈智辉"},{"authorName":"俞重远","id":"cf21cf38-f11f-4b18-a418-3ca906bb3219","originalAuthorName":"俞重远"},{"authorName":"芦鹏飞","id":"db11c1d4-4ed6-4c57-ac51-d71650cdf281","originalAuthorName":"芦鹏飞"},{"authorName":"刘玉敏","id":"c26b7887-3a39-43f2-9c98-05cc022f928a","originalAuthorName":"刘玉敏"},{"authorName":"王永钢","id":"7623f3d2-38e4-4388-91d9-14d4cfc38215","originalAuthorName":"王永钢"}],"doi":"","fpage":"2045","id":"7dd0b616-16a4-443d-8dc3-26c839d46d18","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"49a70d11-7936-4ffd-8469-da3b12216fde","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"3bdd4c05-41af-474e-8772-2994c54da895","keyword":"薄膜生长","originalKeyword":"薄膜生长"},{"id":"d390ebff-3e80-42af-8a5e-741286f24125","keyword":"Buckingham势","originalKeyword":"Buckingham势"},{"id":"ea348e29-7ece-4a42-83ab-2b255b55e8d8","keyword":"GaN","originalKeyword":"GaN"}],"language":"zh","publisherId":"gncl200812032","title":"分子动力学方法模拟GaN薄膜生长","volume":"39","year":"2008"},{"abstractinfo":"主要研究了利用分子动力学方法(MD)模拟等离子体与材料表面相互作用过程时分子动力学方法的参数对模拟结果的影响.详细分析了Berendsen热浴的应用时间、耦合强度和模拟时间量(单个轨迹的作用时间、弛豫时间)对模拟结果的影响,结果表明,热浴的应用时间对模拟结果的影响很大,而其它参数对模拟结果没有太大的影响.","authors":[{"authorName":"秦尤敏","id":"b24944a0-34ea-4cd7-b9fd-686a95f355d7","originalAuthorName":"秦尤敏"},{"authorName":"吕晓丹","id":"9083d726-268e-4f8b-8db7-b8320cfaf27a","originalAuthorName":"吕晓丹"},{"authorName":"宁建平","id":"a7eb8baa-36ff-43c9-aaa3-cb441fb3428c","originalAuthorName":"宁建平"},{"authorName":"张利纯","id":"8a7a6344-0618-4dfd-b3b3-e63ca6c62270","originalAuthorName":"张利纯"},{"authorName":"赵成利","id":"3d829bf5-ef77-418c-8fbd-805f19e5c83b","originalAuthorName":"赵成利"},{"authorName":"贺平逆","id":"165764cf-5d36-4374-867e-0dfe793a4056","originalAuthorName":"贺平逆"},{"authorName":"","id":"b7cd2f4e-5c75-424f-8042-97c1154567ce","originalAuthorName":""},{"authorName":"苟富君","id":"48f1040f-49f8-444b-a08e-bf343141ff8a","originalAuthorName":"苟富君"}],"doi":"","fpage":"257","id":"d729d950-a0a2-4943-8d1b-2c330b01ac10","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0463fa75-f6b9-4c6d-b5cf-62226ace94b0","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"e46d3c75-1856-482b-9ee1-24ca6ae09bb2","keyword":"热浴","originalKeyword":"热浴"},{"id":"714f0f5a-93fc-4f38-a832-be307b3dd25a","keyword":"弛豫","originalKeyword":"弛豫"},{"id":"4ed3aadf-5d98-48f5-8536-713bab0ed860","keyword":"刻蚀","originalKeyword":"刻蚀"}],"language":"zh","publisherId":"cldb2009z2078","title":"分子动力学方法的模拟参数对结果的影响","volume":"23","year":"2009"},{"abstractinfo":"采用动力学方法严格推导了A-Bf-1型逐步反应产物的分子量分布函数,结果与Flory通过概率算法所得的分子量分布函数完全一致.","authors":[{"authorName":"王志","id":"7e601eb8-a756-4907-9df9-d969d61f4c38","originalAuthorName":"王志"},{"authorName":"刘燕","id":"805e2e2a-35c1-4494-9779-dd7b6a321cc1","originalAuthorName":"刘燕"},{"authorName":"王霞","id":"597d7920-dba6-47a1-9603-86a52b1d4f40","originalAuthorName":"王霞"},{"authorName":"张以群","id":"840563da-6fab-41a3-8cbe-eadf3f19ffcd","originalAuthorName":"张以群"}],"doi":"","fpage":"37","id":"3a5c51c3-4e19-4535-a919-b3361233fcf5","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"726598e9-da21-4162-805c-ecc76f19c917","keyword":"A-Bf-1型缩聚反应","originalKeyword":"A-Bf-1型缩聚反应"},{"id":"984f4c0a-7bdf-4644-a8b8-45548ed627d8","keyword":"超支化高分子","originalKeyword":"超支化高分子"},{"id":"4a2979f4-c01c-4603-a257-ecdec7b1b43b","keyword":"分子量分布函数","originalKeyword":"分子量分布函数"},{"id":"9401db73-5712-478d-bb27-868db6b09a20","keyword":"环化反应","originalKeyword":"环化反应"}],"language":"zh","publisherId":"gfzclkxygc200505009","title":"动力学方法获得A-Bf-1型超支化分子分子量分布函数","volume":"21","year":"2005"},{"abstractinfo":"利用嵌入原子模型,采用分子动力学方法计算了贵金属Au低指数晶面及部分简单高指数晶面的表面能.同时,采用Levenberg-Marquardt算法,建立了Au表面能的BP神经网络模型;结合分子动力学模型的计算数据,通过大量数据的自学习训练,完成神经网络模型对Au高指数晶面表面能的预测.计算结果表明:该方法具有较高的预测精度,能正确预言低指数晶面表面能的排序,Au各晶面的表面能随其晶面与(111)密排面夹角的增大呈现先增大后减小的特点.","authors":[{"authorName":"汤伟","id":"9306a353-a8b3-4f77-8645-a7fc049f7bc4","originalAuthorName":"汤伟"},{"authorName":"朱定一","id":"2f0bd22c-01bf-4b0d-8583-6d98a4321a52","originalAuthorName":"朱定一"},{"authorName":"陈丽娟","id":"fc25f5aa-8f61-4b7e-bd45-b085e6721754","originalAuthorName":"陈丽娟"},{"authorName":"关翔锋","id":"1b3a0643-4f81-49e0-9aad-4d65e355c4fb","originalAuthorName":"关翔锋"}],"doi":"","fpage":"105","id":"5bad73f3-1323-4af8-b6c9-76eac61190f1","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"d5048ca7-cb6e-4abf-ba9a-fe1783649352","keyword":"表面能","originalKeyword":"表面能"},{"id":"622d3d68-7d7b-44f3-b196-63fa2ec89e68","keyword":"嵌入原子势","originalKeyword":"嵌入原子势"},{"id":"450bfce2-9090-47e3-b09d-1b780333e33d","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"12477496-89dd-4462-897f-c4519bf0bac8","keyword":"Levenberg-Marquardt算法","originalKeyword":"Levenberg-Marquardt算法"}],"language":"zh","publisherId":"zgysjsxb200501018","title":"基于分子动力学结合神经网络的Au表面能计算方法","volume":"15","year":"2005"},{"abstractinfo":"分子马达是一类将化学能转化为机械能的微小机器.对二维模型的研究表明,非保守力在体系与外界能量交换中发挥重要作用.四态模型较好地反映了马达力学化学过程的各个状态及相应的构象变化.","authors":[{"authorName":"赵同军","id":"16933635-ebf2-475b-9a26-4964eb1fcd19","originalAuthorName":"赵同军"},{"authorName":"李微","id":"5cbcb87b-0cd2-4363-94b8-5c211b50158f","originalAuthorName":"李微"},{"authorName":"韩英荣","id":"b500a529-8786-4007-a785-854154524931","originalAuthorName":"韩英荣"},{"authorName":"卓益忠","id":"a5e126a5-2a23-4362-8193-d87b39e37fc8","originalAuthorName":"卓益忠"}],"doi":"10.3969/j.issn.1007-4627.2004.02.029","fpage":"177","id":"3aa3f1d2-5ea9-43b7-8130-189c7315c2b3","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"13400856-ac5d-415b-b3ff-614a2f32bd7b","keyword":"分子马达","originalKeyword":"分子马达"},{"id":"83cd56c9-30cc-47e2-bae7-c943da79d34d","keyword":"布朗马达","originalKeyword":"布朗马达"},{"id":"a0fb59d7-fda0-4ae6-8b70-f16ffdfe6a9d","keyword":"动力学","originalKeyword":"动力学"},{"id":"cfa7a848-8202-4c7d-bfd9-cd03b01d1101","keyword":"棘齿","originalKeyword":"棘齿"}],"language":"zh","publisherId":"yzhwlpl200402029","title":"分子马达动力学","volume":"21","year":"2004"},{"abstractinfo":"为了预测聚己内酰胺(PA6)与聚烯烃热塑性弹性体(POE)的相容性及其共混物的玻璃化转变温度(Tg)、力学性能和结合能,采用分子动力学(MD)和介观动力学(MesoDyn)模拟方法对PA6/POE共混物进行了研究.结果表明:通过温度-比容曲线可以得到PA6/POE共混体系的Tg分别对应于PA6与POE的Tg,PA6/POE为不相容体系;MesoDyn模拟了共混物的介观形貌与动力学演变过程,通过比较混合物的有序度参数的大小判断混合物为不相容体系.本模拟方法可以作为预测聚合物共混物性能的有利工具,也可以为高聚物配方设计提供理论指导.","authors":[{"authorName":"张彦飞","id":"3ac2aa1e-d616-4f10-be09-37c990564b2c","originalAuthorName":"张彦飞"},{"authorName":"兰艳花","id":"e43bbba5-dae3-433b-b76b-1d489860ac0f","originalAuthorName":"兰艳花"},{"authorName":"付一政","id":"703cc85b-ea09-4a82-803c-24a3b5b25a38","originalAuthorName":"付一政"},{"authorName":"赵贵哲","id":"767fb0ca-76b1-4da5-8337-7e13f6bb6a46","originalAuthorName":"赵贵哲"},{"authorName":"胡国胜","id":"ade7f979-a801-419f-9fc6-66b7ef7f73cd","originalAuthorName":"胡国胜"}],"doi":"10.3969/j.issn.1001-4381.2013.07.009","fpage":"44","id":"88b98545-0158-428b-b8c4-01fd28fa9b24","issue":"7","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"4034568e-0996-47f8-8215-fa31a1c51579","keyword":"聚己内酰胺","originalKeyword":"聚己内酰胺"},{"id":"7f0510ca-0383-435b-93bd-a45903043cd8","keyword":"聚烯烃热塑性弹性体","originalKeyword":"聚烯烃热塑性弹性体"},{"id":"537a8579-81a3-4627-97db-7ab198c3622e","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"6171676f-bb7a-4c67-9812-b37e12d7286d","keyword":"介观动力学","originalKeyword":"介观动力学"},{"id":"64d5d04a-482b-42f6-b4cb-991a82a04cf9","keyword":"相容性","originalKeyword":"相容性"}],"language":"zh","publisherId":"clgc201307009","title":"PA6/POE共混物的分子动力学与介观动力学模拟","volume":"","year":"2013"},{"abstractinfo":"本文采用分子动力学(MD)模拟来计算纳米流体比较重要的热物性:热导率和粘度,与已有实验结果比较符合较好,为进一步研究纳米流体传热效率提供了依据.","authors":[{"authorName":"范庆梅","id":"286af4d2-afc2-4aeb-84a6-2b7cee00a771","originalAuthorName":"范庆梅"},{"authorName":"卢文强","id":"3efacb34-d072-4c8a-8a7d-8bea5a997c29","originalAuthorName":"卢文强"}],"doi":"","fpage":"268","id":"43b31891-e6e2-46ed-9585-500556ea2b66","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"cc84c053-ec35-494c-a3dd-70798772dd4e","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"03600b04-0917-40af-8b4b-f02b923e5b1e","keyword":"分子动力学(MD)模拟","originalKeyword":"分子动力学(MD)模拟"},{"id":"6d464d46-e2e0-4c25-9d03-cd12c137617e","keyword":"热导率","originalKeyword":"热导率"},{"id":"a827e9c3-0c26-4d9b-ae8e-56ad3b0ae122","keyword":"粘度","originalKeyword":"粘度"}],"language":"zh","publisherId":"gcrwlxb200402026","title":"纳米流体热导率和粘度的分子动力学模拟计算","volume":"25","year":"2004"},{"abstractinfo":"为了预测聚烯烃弹性体(POE)与不同聚酰胺(PA6、PA11和PA1010)的相容性及共混物的力学性能和介观形貌,采用分子动力学(MD)和介观动力学(MesoDyn)模拟方法对不同种类的POE/PA共混物进行了研究.结果表明,3种共混体系中PA11/POE共混物的拉伸模量、体积模量及剪切模量都较小,韧性比较好,力学性能和结合能最好;MesoDyn模拟结果表明,PA11与POE相容性最好.本模拟方法可以作为预测聚合物共混物性能的有利工具,也可以为高聚物配方设计提供理论参考.","authors":[{"authorName":"张彦飞","id":"9865528d-9cbd-4c87-8388-6293e4d75977","originalAuthorName":"张彦飞"},{"authorName":"兰艳花","id":"a1af158d-9f3b-45e1-b38e-0f8eda26a16e","originalAuthorName":"兰艳花"},{"authorName":"付一政","id":"c18ca19c-2544-4c42-80d9-04e59110b213","originalAuthorName":"付一政"},{"authorName":"刘亚青","id":"4eff8d08-bca6-4ad7-a2cd-8c364cc5814c","originalAuthorName":"刘亚青"},{"authorName":"胡国胜","id":"d95b8b1e-2e98-4da2-94f3-8ec53a53a733","originalAuthorName":"胡国胜"}],"doi":"","fpage":"182","id":"eafc1aa7-a887-40d4-b100-389b339bc3de","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9a7f93b2-4ce8-4a57-8b9e-1b41f63f2222","keyword":"聚烯烃弹性体","originalKeyword":"聚烯烃弹性体"},{"id":"c169aa76-85fa-414c-baa6-d1581ccc1941","keyword":"聚酰胺","originalKeyword":"聚酰胺"},{"id":"853fb051-e226-4b5c-a5d1-71ba8989d81b","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"8f382c45-c28f-4c40-9bcb-9e7ccaee511a","keyword":"介观动力学","originalKeyword":"介观动力学"},{"id":"47cf8298-e92a-4a2d-aaa2-c2747aa77ac9","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"84771e90-39e1-46ee-b6b8-f63b6bcc25b8","keyword":"结合能","originalKeyword":"结合能"}],"language":"zh","publisherId":"gfzclkxygc201302046","title":"POE/PA共混物性能的分子动力学与介观动力学模拟","volume":"29","year":"2013"}],"totalpage":8476,"totalrecord":84752}