{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用预涂Si粉,Ti+Si粉的方法对TiAl合金进行电子束表面合金,\"原位\"制得了以高硬度金属间化合物Ti5Si3为增强相的表面改性层.利用光学显微镜、扫描电子显微镜、能谱仪及X射线衍射仪分析和研究了电子束表面改性层的显微组织结构;同时测试了沿改性层深度方向的硬度分布.结果表明,表面改性层由TiAl,Ti3Al,Ti5Si3相组成,Ti5Si3相的形态及分布沿层深呈均匀分布;改性层具有较高的显微硬度(HV),最高达895×9.8 MPa,约是基体的3倍.","authors":[{"authorName":"陈迎春","id":"02c20bf0-3b9a-4100-99a2-56e5d35c2680","originalAuthorName":"陈迎春"},{"authorName":"冯吉才","id":"bcfcc201-a93d-416f-9d0b-786eb44b745a","originalAuthorName":"冯吉才"}],"doi":"","fpage":"1969","id":"8b3a4a77-45bd-4712-b286-55814f4c05b2","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"68fee2e5-ca94-4fed-a4a0-0ed23a7ec3fb","keyword":"γ-TiAl合金","originalKeyword":"γ-TiAl合金"},{"id":"04f81120-b0ee-4ac5-b2e5-bc02f8ecdd5d","keyword":"电子束表面合金","originalKeyword":"电子束表面合金化"},{"id":"9e5186f8-69a3-4f59-bc69-dcccc6edf775","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"82359183-ec4c-410c-8ac6-6e87d1efdaec","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"xyjsclygc200512030","title":"TiAl合金电子束表面合金层组织和性能研究","volume":"34","year":"2005"},{"abstractinfo":"采用电子束表面合金技术对ZL109铝硅合金进行表面强化处理,并进行合金层的硬度测试、组织特征和相结构分析以及耐磨性试验.研究结果表明,铝硅合金电子束表面合金化处理后,组织高度细化,并形成具有网状骨骼的亚共晶组织,同时生成许多金属间化合物等强化相而使材料表面硬度大幅度提高,耐磨性能优于高镍铸铁.","authors":[{"authorName":"王英","id":"49507568-d02b-4feb-9ccb-46c3e375bd50","originalAuthorName":"王英"},{"authorName":"程潮丰","id":"6d6e2035-942a-4f66-9fbe-6477b3af3e99","originalAuthorName":"程潮丰"},{"authorName":"甄立玲","id":"7ca5483d-bf01-4215-87bf-ed7613761a50","originalAuthorName":"甄立玲"}],"doi":"10.3969/j.issn.1004-244X.2008.04.017","fpage":"67","id":"a26210df-6240-4403-92b9-52ca0f0fb08a","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"a0e8d9ec-ed4b-466f-bcd7-105c9c7d3071","keyword":"铝硅合金","originalKeyword":"铝硅合金"},{"id":"074b5082-6696-4c12-b844-e6602729b000","keyword":"电子束表面合金","originalKeyword":"电子束表面合金化"},{"id":"a0e88c96-7506-48e1-8b7c-880cd964c6bb","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"cde0ce5d-c719-4dc5-8419-aa1c35cb0033","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"bqclkxygc200804017","title":"电子束合金化处理对铝硅合金组织性能的影响","volume":"31","year":"2008"},{"abstractinfo":"利用强流脉冲电子束对40Cr材料进行表面Al合金,对比分析了其合金前后的表面粗糙度和表面硬度,对合金前后的样品进行了微动摩擦磨损实验,并对摩擦磨损实验过程的摩擦系数和磨损量进行了考察分析.实验结果证明40Cr表面电子束Al合金对试样表面粗糙度的影响具有两面性,40Cr表面电子束Al合金后样品硬度有所提高,经电子束合金的样品摩擦系数在磨损初期都很小,随着摩擦磨损的进行摩擦系数出现突变现象,增大后的摩擦系数与原始样品相当.40Cr材料表面电子束Al合金后,微动摩擦性能得到提高.","authors":[{"authorName":"胡建军","id":"12b08ca3-d6aa-41c7-ae35-9267f637dc06","originalAuthorName":"胡建军"},{"authorName":"张根保","id":"5ad8a5fb-600d-48e0-acfc-9879be70a0dd","originalAuthorName":"张根保"},{"authorName":"陈元芳","id":"4e033f79-3c99-42bb-ba93-e4d7cbdedebf","originalAuthorName":"陈元芳"},{"authorName":"许洪斌","id":"5eaf9102-d31e-4128-9a2f-d2ee7e3cab08","originalAuthorName":"许洪斌"},{"authorName":"韩超","id":"d8da5c96-08d0-4ea1-a11c-5be357bdcbeb","originalAuthorName":"韩超"}],"doi":"","fpage":"9","id":"1fd8d5c4-b5e9-4067-b8ec-ca28cab66877","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"23eed1e6-ca88-4950-8215-f27253da4097","keyword":"强流脉冲电子束","originalKeyword":"强流脉冲电子束"},{"id":"fa3cab0b-5524-4a16-bafa-388a9b97c49a","keyword":"40Cr","originalKeyword":"40Cr"},{"id":"5f38542a-61d2-455c-84f6-4ffb1380ee2d","keyword":"合金","originalKeyword":"合金化"},{"id":"a443d07e-8b3b-428d-bb91-cce3230cd81f","keyword":"摩擦性能","originalKeyword":"摩擦性能"},{"id":"88acb21a-92d1-44fe-8ba1-caa4e83cdad2","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"cldb201220003","title":"40Cr表面电子束Al合金表面性能分析","volume":"26","year":"2012"},{"abstractinfo":"通过建立三维温度场模型,利用数值模拟方法,模拟316L钢表面进行Ti和Al合金的温度场分布,分析Ti、Al涂层厚度以及电子束能量密度对合金的影响.结果表明,在能量密度为6 J/cm2电子束的一次脉冲处理下,316L钢表面合金Ti的优化涂层厚度为1.1μm,表面合金Al的优化涂层厚度为2μm.","authors":[{"authorName":"秦颖","id":"6528824f-450c-418e-b4f1-022204027ef5","originalAuthorName":"秦颖"},{"authorName":"李光芝","id":"e39c6285-c8f3-4efa-ad4b-b9484e2bbc0f","originalAuthorName":"李光芝"},{"authorName":"董闯","id":"2b19b2f8-3adb-404e-8b14-8a78d8f06138","originalAuthorName":"董闯"}],"doi":"","fpage":"244","id":"6e3234b6-0edb-4e93-8e50-44a5219e87b0","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e40ac48a-1605-479e-8159-b778bab4a385","keyword":"强流脉冲电子束","originalKeyword":"强流脉冲电子束"},{"id":"892d1166-5ffc-4fdb-b421-339ce5fb9637","keyword":"表面合金","originalKeyword":"表面合金化"},{"id":"ab55b66b-b060-4b64-bb90-d465b3b2f223","keyword":"温度场","originalKeyword":"温度场"},{"id":"5d756cf6-4ed9-41e4-a17d-fa1d09046a69","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"jsrclxb201511041","title":"强流脉冲电子束表面合金的涂层厚度优化模拟","volume":"36","year":"2015"},{"abstractinfo":"根据强流脉冲电子束表面合金的特点,建立了相应的数学物理模型,以3Cr2W8V模具材料为基体,以Al为合金元素,对电子束照射材料表面所产的热应力进行了数值模拟,并将数值模拟分析结果与实验结果进行了对比分析,结果表明:有限元模拟显示3Cr2W8V电子束合金Al样品(Al层厚度t=2 μm)冷却后的表层4μm范围内的点残余拉应力达到材料的屈服极限750 MPa,理论上材料将发生屈服.通过金相观察,样品表面有大量熔坑形貌,但并未出现明显裂纹,说明3Cr2W8V样品表面屈服形式主要为熔坑.另外,3Cr2W8V材料表层10 μm范围内主要受残余拉应力,残余拉应力大小约为650 ~ 750 MPa.随着深度的增加,残余拉应力值急剧减小,并在距离表层20μm处受最大残余压应力,最大残余压应力值约为120 MPa,并随着深度的继续增加,残余压应力值缓慢减小.","authors":[{"authorName":"陈元芳","id":"130b3753-62a7-4423-b419-950e4e670543","originalAuthorName":"陈元芳"},{"authorName":"许洪斌","id":"c40ae931-fd52-42ee-bd3b-cc00d178e4b0","originalAuthorName":"许洪斌"},{"authorName":"胡建军","id":"1d99792b-b177-4baa-b552-7b3f39235774","originalAuthorName":"胡建军"},{"authorName":"杨长辉","id":"97ab1769-aa88-4bba-a68d-da0b44cb5986","originalAuthorName":"杨长辉"},{"authorName":"韩超","id":"1f922228-6fb0-4499-bc40-6efa1f306ad6","originalAuthorName":"韩超"}],"doi":"","fpage":"160","id":"597f947a-f74f-466b-afb7-845df5cc6628","issue":"z2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"808160c6-181c-4194-8489-296114e29a72","keyword":"强流脉冲电子束","originalKeyword":"强流脉冲电子束"},{"id":"c2bceac9-3cc9-4c0e-b586-8291b7f1a09a","keyword":"表面合金","originalKeyword":"表面合金化"},{"id":"2627f03f-122d-4f5c-b990-112c8823f68b","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"6cef2697-81b1-40dd-a0ed-18509e540b29","keyword":"热应力","originalKeyword":"热应力"}],"language":"zh","publisherId":"jsrclxb2012z2032","title":"强流脉冲电子束表面合金热应力耦合场数值模拟","volume":"33","year":"2012"},{"abstractinfo":"利用强流脉冲电子束对不锈钢表面进行了快速钛合金.将精细钛粉预涂在基体表面后采用强流脉冲电子束对其进行后处理.在电子束表面的快速加热熔化、混合及增强扩散效应的作用下,部分钛熔入基体表层形成一层富钛层.由于钛的添加有利于形成α相,合金层由α相和γ相混合组成.在模拟体液中的动态极化测试表明,316L医用不锈钢经强流脉冲电子束表面合金后,其在模拟体液中的耐腐蚀性能获得了显著的提高.","authors":[{"authorName":"张可敏","id":"e5ec73e5-f821-41f5-bd55-5080019ada4c","originalAuthorName":"张可敏"},{"authorName":"邹建新","id":"8af3b207-7356-493e-8109-609da1a8c486","originalAuthorName":"邹建新"},{"authorName":"杨大智","id":"96667165-f467-4f7f-a0c9-d096e89fdb6e","originalAuthorName":"杨大智"}],"doi":"10.3969/j.issn.1009-6264.2006.05.026","fpage":"108","id":"236b9c44-3509-46bd-94a8-4b0aa735e639","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"cc82fae9-277f-46f4-a025-8287ae026552","keyword":"强流脉冲电子束","originalKeyword":"强流脉冲电子束"},{"id":"e612c2e3-d035-4fd0-9517-62dded536f0b","keyword":"表面合金","originalKeyword":"表面合金化"},{"id":"6168ddd2-311b-49fc-b980-38e873a5dce8","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"ae414a47-3436-4aa5-89cf-4729fdb56103","keyword":"不锈钢","originalKeyword":"不锈钢"}],"language":"zh","publisherId":"jsrclxb200605026","title":"316L不锈钢强流脉冲电子束表面合金及其耐蚀性","volume":"27","year":"2006"},{"abstractinfo":"通过使用高能量密度的电子束高速扫描预先涂有Si粉的TiAl合金表面, \"原位\"制得了以高硬度金属间化合物Ti5Si3为增强相、以TiAl、 Ti3Al为基体的复相合金表面改性层. 利用光学显微镜、电子探针、能谱仪及X射线衍射仪分析和研究了电子束表面改性层的显微组织结构; 同时测试了沿改性层深度方向的硬度分布. 结果表明: 表面改性层由TiAl、 Ti3Al、 Ti5Si3相组成, Ti5Si3相的形态及分布沿层深方向呈现梯度变化, 在表层为粗大的六棱柱状结构, 沿改性层向内, 其中、下部由于冷却速度相对较快, 硬质相的形态及分布趋于细小、密集; 改性层与基体间没有明显的界面, 为完全的冶金结合; 改性层具有较高的硬度, 显微硬度最高达到895, 约为基体的3倍.","authors":[{"authorName":"陈迎春","id":"9161ffc3-30f0-4b71-9275-4ada0cd32b88","originalAuthorName":"陈迎春"},{"authorName":"冯吉才","id":"1cd3934b-2147-4647-87e0-bf0f6d4c0ed0","originalAuthorName":"冯吉才"}],"doi":"","fpage":"1839","id":"9b18fb86-07a1-4d47-948f-5db3208b3a05","issue":"11","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"1c905ea0-15b9-40bb-9c50-dc2760c8039d","keyword":"电子束表面改性","originalKeyword":"电子束表面改性"},{"id":"e0a0cae6-10bc-4871-84dd-c2cee4fe0b94","keyword":"γ-TiAl合金","originalKeyword":"γ-TiAl合金"},{"id":"bbf74b94-5c99-4051-8534-84654e1fc65c","keyword":"Ti5Si3","originalKeyword":"Ti5Si3"},{"id":"7338952b-d987-4448-8059-54702b1093c0","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"b34433a1-7513-4e8a-b49c-f877b38a8b99","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"zgysjsxb200411009","title":"电子束表面合金制备Ti5Si3/TiAl复相合金改性层","volume":"14","year":"2004"},{"abstractinfo":"提出了一种钛合金电子束技术实现方法.借助于新型电子束扫描控制系统,通过扫描波形的特殊设计,可以实现电子束技术,从而在金属表面产生高约几毫米的毛刺.利用这种实现方法,通过选取不同的扫描波形和扫描频率获得了各种不同的毛刺形貌,并进行了毛刺的组织分析.结果表明:六边汇聚型扫描波形毛效果最理想,而合适的扫描频率同样也是产生毛化形貌的关键.毛刺的微观组织区域分成了边缘区、中心区、热影响区和母材.","authors":[{"authorName":"王西昌","id":"d8f4c1bc-1e3d-4a30-83a0-5a25c5365f57","originalAuthorName":"王西昌"},{"authorName":"郭恩明","id":"675358e5-ff52-462e-9569-028e9310934e","originalAuthorName":"郭恩明"},{"authorName":"巩水利","id":"260fdc5e-6132-4dbe-81c0-19bc556950c8","originalAuthorName":"巩水利"},{"authorName":"李斌","id":"1887e4ba-fc66-4196-9e4c-14ff08b9f9ba","originalAuthorName":"李斌"}],"doi":"","fpage":"819","id":"919c3b29-ab58-473b-bc04-4e6156bc0dbe","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a1852f7b-e54c-470c-b5a3-4d436acd94e9","keyword":"电子束","originalKeyword":"电子束毛化"},{"id":"ab300e26-d810-47a8-bb48-3b19c4697da1","keyword":"扫描波形和频率","originalKeyword":"扫描波形和频率"},{"id":"0f41515d-c197-4df3-ba40-01ae0aa30610","keyword":"毛刺","originalKeyword":"毛刺"},{"id":"f8bf1cdb-e365-436c-87fc-56d631f2b2af","keyword":"六边型汇聚","originalKeyword":"六边型汇聚"},{"id":"9fd6aecc-35ac-457e-910f-3aa8c49032a0","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"xyjsclygc201404011","title":"TC4钛合金电子束的实现方法和试验分析","volume":"43","year":"2014"},{"abstractinfo":"根据电子束表面扫描过程的实际情况,建立了铝合金电子束表面扫描处理的温度场有限元模型,分析了电子束处理后表面熔池的形态。仿真过程中,考虑了试样表面的热辐射和材料的相变,并用实验验证了仿真结果,讨论了电子束加速电压、下时间对熔池尺寸的影响。结果表明:采用电子束表面处理技术,在铝合金材料表面可以获得细小的晶粒组织;在温度场的仿真过程中,模拟得到的熔池的尺寸与实验所测相吻合;仿真得到试样表面温度场分布均匀,试样表面的温度场呈带状分布,横截面处的温度场分布呈梯度分布;熔池的深度和宽度随着电子束加速电压和下时间的增加而增加。","authors":[{"authorName":"王荣","id":"199fb437-5146-405f-83e1-a310b1ae73a4","originalAuthorName":"王荣"},{"authorName":"沈国斌","id":"c68e6a11-a455-49d9-9bed-4f0832969818","originalAuthorName":"沈国斌"},{"authorName":"魏德强","id":"51a5b0d4-57a1-40c6-ac84-d5ac5468a871","originalAuthorName":"魏德强"}],"doi":"","fpage":"158","id":"c052c5e9-ec82-4c6f-b797-74a21c87cd4c","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"42b11396-72dc-4d04-8a3a-767980e75854","keyword":"电子束","originalKeyword":"电子束"},{"id":"9e95f775-4172-445f-a3ff-4dc76461cabd","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"243fd673-a30c-4514-bc83-c178cc4f0bb2","keyword":"温度场","originalKeyword":"温度场"},{"id":"cc95ece6-7b35-4f13-bff7-b4178755fc24","keyword":"熔池","originalKeyword":"熔池"},{"id":"83fce0f3-a460-4915-91f9-5354a72faf67","keyword":"热流密度","originalKeyword":"热流密度"}],"language":"zh","publisherId":"jsrclxb201211031","title":"6061铝合金电子束表面处理温度场的仿真与实验验证","volume":"33","year":"2012"},{"abstractinfo":"强流脉冲电子束是近几十年发展起来的一种新兴的表面处理技术.在介绍电子束表面处理工艺特点的基础上,重点论述了电子束表面处理技术中表面相变强化、表面重熔、表面合金表面非晶表面薄层退火等工艺方法及最近研究进展,提出怎样扩大强流脉冲电子束应用范围是研究重点之一.","authors":[{"authorName":"赵铁钧","id":"d1c211c4-59bd-42ec-9f92-5aec8a1d7bb0","originalAuthorName":"赵铁钧"},{"authorName":"田小梅","id":"6b8c7d7e-88a3-4506-bc8e-b674f0d93025","originalAuthorName":"田小梅"},{"authorName":"高波","id":"387e58d2-e383-4f6a-96ef-f53788f2a248","originalAuthorName":"高波"},{"authorName":"涂赣峰","id":"517dfd0b-477c-4304-a168-82d47f54c146","originalAuthorName":"涂赣峰"}],"doi":"","fpage":"89","id":"c02331fa-b6ca-4374-b817-030633af98e6","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e1073dc6-c5d6-4260-88c3-e2d9e7a4b99f","keyword":"电子束","originalKeyword":"电子束"},{"id":"a243e8e3-d42b-47dd-9775-f452297a2cf6","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"3b2c5ac8-875d-4fa3-bf32-41a67953d320","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"cldb200905022","title":"电子束表面处理的研究进展","volume":"23","year":"2009"}],"totalpage":9870,"totalrecord":98695}