{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"与通常的方法不同,本文从微元封闭体系的简单模型(而非微元控制体)出发,推导出微小扰动在流体介质中的相对传播速率---音速为a2=(p/ρ)s, 并强调指明该式对于双相流体介质的适用条件。对于均匀双相流体的冻结音速,文中从理论上分析并导出了存在最小音速(气隙率0<α<1))的条件及此时的气隙率的计算公式,这些理论分析的结果是与已知的实验数据相符的","authors":[{"authorName":"王伯年","id":"cae604d0-9e50-4715-b37d-602bc4bf157d","originalAuthorName":"王伯年"},{"authorName":"曹伟武","id":"a953bff2-7345-4d78-9e43-9b8e18bc735b","originalAuthorName":"曹伟武"},{"authorName":"赵在三","id":"0f04dae2-e744-48f6-8dcb-52f7cf154aa5","originalAuthorName":"赵在三"}],"doi":"","fpage":"623","id":"6965ec83-31c6-4ef6-8723-566c9f5875b3","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"5f2ab8b7-61c8-4402-8548-ea84ec8bf9f2","keyword":"双相流体","originalKeyword":"双相流体"},{"id":"cfeb7425-92bb-4190-8b98-608c92b7f943","keyword":"冻结音速","originalKeyword":"冻结音速"},{"id":"bd2951ed-540d-41eb-aa8b-edc6a015fcc3","keyword":"最小音速","originalKeyword":"最小音速"},{"id":"245245f3-bf10-47ea-bdad-d4f8a25255c7","keyword":"含气率","originalKeyword":"含气率"}],"language":"zh","publisherId":"gcrwlxb200005025","title":"对于均匀双相流体冻结音速的分析","volume":"21","year":"2000"},{"abstractinfo":"我们研究中温系窑用锥(пК123—146)产生冻结现象的条件、原因及不冻结锥应有的化学矿物组成,指出该系锥的冻结是由于锥体中的液相在适当的条件下析出晶体所致。等轴晶系方石英的析晶引起ПК123—130号锥发生冻结;而ПК132—146各号锥冻结的原因则可能是由于析出莫来石。Na_2O,K_2O含量对冻结有决定性的影响。ПК130—123各号锥应用钾长石,НК132—146各号锥应用钢长石可以制得不会冻结的该系窑用锥。还有在研究MgO对冻结的作用时证明以菱苦土作为MgO的原料对解决窑用锥的冻结问题是有害而无益的。","authors":[{"authorName":"陈显求","id":"fe1de00c-32d8-4c4e-a9ed-7f1e2fe49868","originalAuthorName":"陈显求"}],"categoryName":"|","doi":"","fpage":"107","id":"485f098f-6891-4b13-8376-936e8f1c9e44","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1957_1_8","title":"窑用三角锥“冻结”的原因","volume":"2","year":"1957"},{"abstractinfo":"对冷面上水珠的冻结过程及其影响因素进行了实验研究.实验结果表明:水珠温度被降到0℃以下时,水珠并未马上冻结,而是呈过冷态并持续一段时间,在某一时刻开始冻结时过冷水珠温度回升,整个水珠完全冻结后,冰珠温度又开始下降至与环境平衡的温度.冷面温度是影响水珠冻结的主要因素,表面接触角、粗糙度以及水珠体积等对水珠冻结也有影响.","authors":[{"authorName":"吴晓敏","id":"14d8e007-b6a1-4153-aa4d-e50133249883","originalAuthorName":"吴晓敏"},{"authorName":"许旺发","id":"e8a0af24-f4bf-4040-ad11-36d11b4d1916","originalAuthorName":"许旺发"},{"authorName":"王维城","id":"105b3d93-38a8-48b0-8566-c9cb1d86d8ee","originalAuthorName":"王维城"},{"authorName":"唐黎明","id":"e108b9c1-c91e-445f-9036-110b6463b38a","originalAuthorName":"唐黎明"}],"doi":"","fpage":"104","id":"19bc5f2a-e0af-47c7-a04b-9af03b6b8682","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"53cb13bd-8f85-4578-8bad-89cdbda5d706","keyword":"过冷水珠","originalKeyword":"过冷水珠"},{"id":"68314368-e0f4-414a-8712-6d3388b6c131","keyword":"冻结","originalKeyword":"冻结"},{"id":"eb7ca529-f325-4575-9a4c-5e619f4b5204","keyword":"冻结开始时间","originalKeyword":"冻结开始时间"}],"language":"zh","publisherId":"gcrwlxb200501029","title":"冷面上过冷水珠冻结的实验研究","volume":"26","year":"2005"},{"abstractinfo":"本文理论推导出全氟磺酸膜中水的冻结温度与摩尔含水量λ之间的关系式,并采用示差扫描量热法通过实验测试不同水含量下Nation211膜的冻结温度.结果表明:Nation211膜的冻结温度随水含量的增大而升高.当膜中水总含量λ<7时,膜中水的冻结温度下降到-15℃以下;而当A<20时,膜中水的冻结温度低于-20℃.理论计算与实验测试数据十分吻合.","authors":[{"authorName":"罗琴","id":"6de24c50-22b2-4c20-8087-7c6f6e396cd4","originalAuthorName":"罗琴"},{"authorName":"王俊","id":"0eabc5ca-1dc3-4954-8c08-9ee84f585ab2","originalAuthorName":"王俊"},{"authorName":"涂正凯","id":"66a5541f-f406-4fd8-95e2-ec7cc9467936","originalAuthorName":"涂正凯"},{"authorName":"潘牧","id":"77ca3121-6fe2-477e-8406-e2e7da5a7cba","originalAuthorName":"潘牧"},{"authorName":"万忠民","id":"ab4a1500-a562-4745-9d4c-2df2746bb8f3","originalAuthorName":"万忠民"},{"authorName":"刘志春","id":"ad047d5d-04e5-4bd7-9ac0-85f493d54933","originalAuthorName":"刘志春"},{"authorName":"刘伟","id":"8bdfad56-4c22-485d-a5d3-13abf8255e39","originalAuthorName":"刘伟"}],"doi":"","fpage":"743","id":"3bf9fa4d-ebf4-4304-b8f2-1ddba03d0edc","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"583f3744-fb7a-4986-a489-b22e96633a9a","keyword":"质子交换膜","originalKeyword":"质子交换膜"},{"id":"f9ce0393-a0db-43c2-97e7-42291cef9c76","keyword":"含水量","originalKeyword":"含水量"},{"id":"84807857-c772-44a9-8c78-0a558461b320","keyword":"冻结温度","originalKeyword":"冻结温度"},{"id":"c2e7b4d4-ea5a-4cbe-a657-4dc41fe526b0","keyword":"低温启动","originalKeyword":"低温启动"}],"language":"zh","publisherId":"gcrwlxb201404028","title":"质子交换膜冻结温度的理论与实验研究","volume":"35","year":"2014"},{"abstractinfo":"影响饱和土冻结过程的因素很多而且复杂,本文采用刚性冰模型对于持续补水的饱和颗粒土的冻结过程进行了一维数值模拟,分析了外载、导水系数以及土豹持水性对于冻结过程以及冻胀的影响,计算结果表明外载增加使得冻胀速度降低,较大的导水系数以及较好的持水性导致分凝冻胀量较大.","authors":[{"authorName":"曹宏章","id":"68a5aa4f-509f-483d-b54c-f91c1a874d31","originalAuthorName":"曹宏章"},{"authorName":"刘石","id":"9c6682da-a42c-4c48-a379-c47e7f175428","originalAuthorName":"刘石"}],"doi":"","fpage":"128","id":"dafc81b9-b263-4dda-a3f1-59db0c18619e","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9e60edb1-b79f-44c6-a89a-e40d54a12b25","keyword":"冻胀","originalKeyword":"冻胀"},{"id":"ba3ec737-f584-48b8-a7e3-024f9b0d2db6","keyword":"刚性冰模型","originalKeyword":"刚性冰模型"},{"id":"6832a5e9-0495-4518-8ae6-ffeefcdda66c","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200701042","title":"饱和颗粒土冻结过程的数值模拟","volume":"28","year":"2007"},{"abstractinfo":"冷冻外科中组织冻结过程的分析对手术实施十分重要.本文建立了低温冷刀实验台,在模拟生物组织中进行冷冻实验,测量了冰球内某点的温度变化;并用有限元方法求解了建立在焓法基础上的模拟生物组织冻结过程多维数学模型,计算结果与实验值符合较好;用该模型和方法计算了实验条件下冰球内的温度梯度变化和冷刀所需理论冷量;分析了不同的冷刀直径对冻结过程的影响.","authors":[{"authorName":"张洁","id":"27c1500f-12fd-4d9e-b9ed-02752aaacf88","originalAuthorName":"张洁"},{"authorName":"华泽钊","id":"45025b49-f2a1-4624-93bd-c97110656a04","originalAuthorName":"华泽钊"},{"authorName":"陈儿同","id":"a353f2b4-0079-4673-a0fc-4bbe9fcf988b","originalAuthorName":"陈儿同"},{"authorName":"徐红艳","id":"158425d3-5010-4118-9161-3419f87a915d","originalAuthorName":"徐红艳"}],"doi":"","fpage":"350","id":"a9c6b790-7573-4fe4-96af-ca65cab6c2cd","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9218f5f2-3a0b-4940-99da-c7491d3fb837","keyword":"模拟生物组织","originalKeyword":"模拟生物组织"},{"id":"c1a839b0-50ef-4f44-b05a-c0c41e05e687","keyword":"冻结问题","originalKeyword":"冻结问题"},{"id":"3fbc9d47-a7b6-4151-b2cb-b4311ac65aed","keyword":"焓法","originalKeyword":"焓法"},{"id":"1722be9d-0c87-46f2-8929-f8769be8a275","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"gcrwlxb200003022","title":"模拟生物组织冻结过程实验与分析","volume":"21","year":"2000"},{"abstractinfo":"位于海边仅15m左右的仓上金矿新立矿区主竖井利用冻结法施工.由于夏季施工以及竖井旁海水养殖厂水位影响导致冻结壁难以形成,最终采取降水法使冻结成功.","authors":[{"authorName":"徐景阁","id":"bf458201-5670-4426-af7b-5c84245f426e","originalAuthorName":"徐景阁"}],"doi":"10.3969/j.issn.1001-1277.2002.09.005","fpage":"17","id":"2d4cf72c-8781-43a0-8b5a-4767702dc106","issue":"9","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"d45ac48c-abfc-4db3-a268-79fe750527e0","keyword":"竖井","originalKeyword":"竖井"},{"id":"74fb6378-9c9f-4544-8ff6-0e0de5c6ebc9","keyword":"施工","originalKeyword":"施工"},{"id":"f1bb3520-6fee-43de-829f-2adeafbd0f00","keyword":"冻结法","originalKeyword":"冻结法"}],"language":"zh","publisherId":"huangj200209005","title":"仓上金矿新立矿区主竖井冻结实践","volume":"23","year":"2002"},{"abstractinfo":"本文研究了冷壁面温度对疏水表面(θ=108.8°)上单个水滴冻结过程的影响,比较了水滴的冻结时间及冻结前后的形态变化。结果表明,水滴冻结所需要的时间随冷表面温度的降低而减小,冷表面温度越低,水滴冻结后其顶端越容易出现树枝状霜晶生长。最后,根据能量守恒原理建立了冷表面上水滴冻结的数学模型,给出了相应的表达式,进而分析了壁面温度对水滴冻结时长的影响,计算结果与实验结果一致。","authors":[{"authorName":"黄玲艳","id":"24d17a92-cdc3-4684-bce2-ad4c33b8ab7a","originalAuthorName":"黄玲艳"},{"authorName":"刘中良","id":"8dcb4dea-3fc7-4235-b6d2-7c0a8391aa39","originalAuthorName":"刘中良"},{"authorName":"勾昱君","id":"86f70b1f-d929-4c84-801f-baedadcbda89","originalAuthorName":"勾昱君"},{"authorName":"刘耀民","id":"65f7758e-2c9c-4158-b4c5-75bc8cf9059e","originalAuthorName":"刘耀民"}],"doi":"","fpage":"1009","id":"2ab27803-2909-4345-be9d-1300f725d70b","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4301acbb-337f-45ed-bf63-eba891dbdd2e","keyword":"疏水表面","originalKeyword":"疏水表面"},{"id":"cfa84292-763e-4dad-93df-7a124a65dadb","keyword":"冻结","originalKeyword":"冻结"},{"id":"57e02d70-1314-40aa-9054-39bde056435b","keyword":"接触角","originalKeyword":"接触角"}],"language":"zh","publisherId":"gcrwlxb201206026","title":"壁面温度对疏水表面上水滴冻结的影响","volume":"33","year":"2012"},{"abstractinfo":"本文通过实验和数值模拟手段研究冷空气中水滴的冷却和随后的冻结过程.微小水滴被黏附在热电偶感温点上并置于冷空气中,测量了水滴冷却和冻结过程中的温度变化.用显微镜观察了冻结过程的现象,建立了水滴冻结的相变动力学模型.在此基础上的数值模拟结果基本与实验相符.","authors":[{"authorName":"王皆腾","id":"005091ca-572e-4496-8879-c726d0415ced","originalAuthorName":"王皆腾"},{"authorName":"刘中良","id":"c6282f23-4784-45ff-beb7-a1560ab2b498","originalAuthorName":"刘中良"},{"authorName":"黄玲艳","id":"2432be26-30ed-46df-8c4f-da6d1f70e20a","originalAuthorName":"黄玲艳"},{"authorName":"程水源","id":"13c02221-f69d-46bb-87d1-4f07a52dc567","originalAuthorName":"程水源"}],"doi":"","fpage":"1360","id":"d7298f9f-2614-4dc4-a6dd-54cc7d9552ff","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fb34a1ea-8950-4fba-82a2-919ab705ae05","keyword":"水滴","originalKeyword":"水滴"},{"id":"1859e7f5-a5c8-40a9-a244-6e2c694357ab","keyword":"过冷","originalKeyword":"过冷"},{"id":"915a0aa9-577f-49e6-aeae-553108029386","keyword":"相变","originalKeyword":"相变"},{"id":"bc5bc625-f407-478b-b2e0-4f4100ff7f6f","keyword":"冻结","originalKeyword":"冻结"}],"language":"zh","publisherId":"gcrwlxb200808025","title":"冷空气中水滴的冷却与冻结过程研究","volume":"29","year":"2008"},{"abstractinfo":"文采用热机械分析仪(TMA)分别研究了低温保护剂(CPA)和冻结速率对兔主动脉冻结相变过程中膨胀的影响.研究结果表明:在兔主动脉的冻结过程中,先是逐渐膨胀到某一峰值,然后突然有收缩的发生;降温速率越大,其相应的热膨胀系数也越大;添加二甲亚砜(DMSO)大大增加了主动脉冻结过程的未冻水含量,从而对其冻结膨胀有明显影响,而且,DMSO浓度越大,其冻结膨胀系数越小.","authors":[{"authorName":"胥义","id":"d7d1f00b-a7c5-4b91-9cda-6d5afc4b157e","originalAuthorName":"胥义"},{"authorName":"周国燕","id":"b872b53f-d01e-42c5-ab42-c84baf3b88cc","originalAuthorName":"周国燕"},{"authorName":"高才","id":"b8a202c4-2600-42ba-bb1b-03c80df68e23","originalAuthorName":"高才"},{"authorName":"华泽钊","id":"d199359f-dec7-44dd-bf94-b77fe5532850","originalAuthorName":"华泽钊"}],"doi":"","fpage":"1013","id":"91f1f155-db6e-4530-8bd5-7765a6c52902","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c83b4e3a-d340-4324-b80d-a6a11bd079f0","keyword":"兔主动脉","originalKeyword":"兔主动脉"},{"id":"e9bd5a95-2262-492d-a6be-37ae2de1a09c","keyword":"热膨胀","originalKeyword":"热膨胀"},{"id":"31a4fe4b-eef0-400c-8f22-b49504fd1c39","keyword":"低温保护剂","originalKeyword":"低温保护剂"},{"id":"cf463662-6a2d-439d-a430-a65777ba863c","keyword":"冻结","originalKeyword":"冻结"}],"language":"zh","publisherId":"gcrwlxb200506036","title":"兔主动脉冻结膨胀行为及其影响因素的研究","volume":"26","year":"2005"}],"totalpage":63,"totalrecord":627}