{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了国内外废旧聚酯循环利用的新工艺与新方法.物理循环新技术通过熔融、净化、固态缩聚等过程制得高质量的再生聚酯;化学循环技术可获得高纯度的聚酯单体,用作直接合成新聚酯,并构成闭路循环的绿色化工过程.","authors":[{"authorName":"张昊宏","id":"654fa154-5724-4e2e-8c56-fe495372f227","originalAuthorName":"张昊宏"},{"authorName":"相宏伟","id":"7a796bd0-8100-458e-9d31-dee24421f537","originalAuthorName":"相宏伟"},{"authorName":"杨勇","id":"f5fc0d4f-d8ed-4629-8ea4-906c83fed81d","originalAuthorName":"杨勇"},{"authorName":"李永旺","id":"c9abf95f-ebfc-4a4b-ab14-9c08178f5f89","originalAuthorName":"李永旺"}],"doi":"","fpage":"6","id":"72a9b341-cebe-41b3-80d9-57afe8fe547f","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2fdc4d42-290d-42d4-b8df-b1a4604f8348","keyword":"废旧聚酯","originalKeyword":"废旧聚酯"},{"id":"1cf49984-f9cf-42ff-b117-8de105ff97ca","keyword":"物理循环","originalKeyword":"物理循环"},{"id":"52f469d1-46e6-467d-94f8-51a4824b2d4a","keyword":"化学循环","originalKeyword":"化学循环"},{"id":"65cb0242-217b-4fd0-a3a7-960552580bca","keyword":"闭路循环","originalKeyword":"闭路循环"}],"language":"zh","publisherId":"gfzclkxygc200306002","title":"聚酯循环利用新进展","volume":"19","year":"2003"},{"abstractinfo":"以某厂210t钢包RH精炼装置为研究对象,通过1∶4水力模型对现场生产过程进行物理模拟,研究驱动气体流量、钢液处理量、浸入深度、真空度和气孔数对循环流量的影响。研究结果表明:RH循环流量随着驱动气体流量、浸入深度、真空度、气孔数的增大和处理量的减小而增大;该RH装置的循环流量最大可以达到66.4%。","authors":[{"authorName":"迟云广","id":"2474af74-79b1-4eb7-8b30-ebf261a37e8a","originalAuthorName":"迟云广"},{"authorName":"吕宏禹","id":"4c3ae0c4-f09a-4560-b9d3-ac530206f6e3","originalAuthorName":"吕宏禹"},{"authorName":"王恒辉","id":"e93d0ef1-5043-450c-8a40-5b851f58679f","originalAuthorName":"王恒辉"},{"authorName":"刘云","id":"d74dfaab-4cbc-40c2-9904-f0a63ff88ba4","originalAuthorName":"刘云"},{"authorName":"洪军","id":"23e5256f-ee74-40eb-be16-8d52a58c9564","originalAuthorName":"洪军"},{"authorName":"沈巧珍","id":"df3c56cd-60fd-4bec-a8c9-360ac8dc3524","originalAuthorName":"沈巧珍"}],"doi":"","fpage":"21","id":"e123924e-810a-4b47-b249-13a689dc043e","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"eff92653-8b57-4d59-be50-fb8402e304bb","keyword":"RH精炼装置","originalKeyword":"RH精炼装置"},{"id":"53256490-98e7-4dac-8602-9a07ce099f5b","keyword":"物理模拟","originalKeyword":"物理模拟"},{"id":"4f365de3-fac7-4af8-ba27-450763469a5b","keyword":"循环流量","originalKeyword":"循环流量"}],"language":"zh","publisherId":"gtyj201202008","title":"RH精炼过程循环流量的物理模拟","volume":"40","year":"2012"},{"abstractinfo":"在120 t RH-MFB多功能真空精炼装置1∶5.45比例的水模型上,采用毕托管测定下降管内钢水流速,从而测定循环流量的方法,研究了真空循环精炼过程中钢液的环流特性.考察了该冶金反应器主要结构参数和工艺操作因素,包括插入管内径、驱动气体流量、驱动气体用喷嘴个数及其布置、驱动气体引入位置(气泡行程)、插入管浸入深度、钢水处理容量等对循环流量的影响关系.结果表明,循环流量随插入管内径、驱动气体流量、驱动气体用喷嘴个数、气泡行程、插入管浸入深度的增加而加大.","authors":[{"authorName":"舒宏富","id":"f789dd4f-6fa0-4626-afa9-003f1b932db0","originalAuthorName":"舒宏富"},{"authorName":"宋超","id":"a236d937-423c-4a87-b5f2-7f37d00c2f50","originalAuthorName":"宋超"},{"authorName":"张晓峰","id":"d301ee3f-94f2-4d88-ad33-90657e8c1d62","originalAuthorName":"张晓峰"},{"authorName":"张战","id":"fd6416e1-c475-4eaa-96e8-4db175f2e296","originalAuthorName":"张战"},{"authorName":"邹宗树","id":"8ed39816-39a2-428f-92f6-b4f04c6506a4","originalAuthorName":"邹宗树"}],"doi":"10.3969/j.issn.1671-6620.2004.02.006","fpage":"107","id":"15fa25eb-f435-4064-994c-46c328e6b16d","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"77379f6f-4782-4cc0-9605-7429c680e92d","keyword":"真空循环精炼","originalKeyword":"真空循环精炼"},{"id":"6844365d-527d-44b4-9f74-617285bd55d5","keyword":"RH","originalKeyword":"RH"},{"id":"2e296df0-ed24-4719-a5ec-68ae25c5c8b1","keyword":"循环流量","originalKeyword":"循环流量"},{"id":"736c5519-b259-4580-a5af-c8fc03dc1ae5","keyword":"物理模拟","originalKeyword":"物理模拟"}],"language":"zh","publisherId":"clyyjxb200402006","title":"RH-MFB真空精炼过程中循环流量的物理模拟研究","volume":"3","year":"2004"},{"abstractinfo":"航空发动机涡轮叶片工作时表面经常产生CaO-MgO-Al2O3-SiO2(简称CMAS)等沉积物。本文中研究了电子束物理气相沉积(EB-PVD)制备ZrO2热障涂层(TBCs)在CMAS环境下的热循环行为及失效机制。结果表明, 在1200℃热冲击条件下, 表面涂覆CMAS的热障涂层的热循环寿命低于100次, 而未涂覆CMAS的涂层寿命达到500次以上, CMAS 的存在加速了热障涂层的剥落失效。在1200℃经过210次循环后, ZrO2陶瓷层与CMAS之间形成了约8 μm厚的互反应区, 其形成主要与CMAS中Ca^2+内扩散有关。CMAS环境下热障涂层陶瓷层产生大量横向裂纹, 涂层的失效主要以陶瓷层片状剥落为主。","authors":[{"authorName":"苗文辉","id":"13a2be97-3d94-4bbf-af04-927ba838bdbd","originalAuthorName":"苗文辉"},{"authorName":"王璐","id":"c6ab31e1-6ba6-4b5d-9a31-f83d571d040d","originalAuthorName":"王璐"},{"authorName":"郭洪波","id":"0789ed24-668a-4e9e-959c-f403af9b4817","originalAuthorName":"郭洪波"},{"authorName":"彭徽","id":"92af38fc-73b2-47e8-9f6a-6546b6536c96","originalAuthorName":"彭徽"},{"authorName":"王凯","id":"7a1368c7-cb10-44c5-accc-7ea0f8749a20","originalAuthorName":"王凯"},{"authorName":"宫声凯","id":"d46458dd-e856-4749-804c-b9cbb5862635","originalAuthorName":"宫声凯"}],"doi":"","fpage":"76","id":"61a1fbc8-e45e-405a-b61a-1e37bb37a4e0","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ae24af2c-ff4e-458d-8f11-d8845171c58d","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"0c67b346-e789-4837-b419-b31bf2d02035","keyword":"循环热冲击","originalKeyword":"循环热冲击"},{"id":"10250491-fe31-46b9-8578-3f5bf8dd950b","keyword":"CMAS","originalKeyword":"CMAS"},{"id":"4665a18a-8dc1-4d38-9f94-b2c3af8b0c95","keyword":"互反应区","originalKeyword":"互反应区"},{"id":"84f9899a-7001-47d9-ba75-926f99578954","keyword":"失效","originalKeyword":"失效"}],"language":"zh","publisherId":"fhclxb201205013","title":"CMAS环境下电子束物理气相沉积热障涂层的热循环行为及失效机制","volume":"29","year":"2012"},{"abstractinfo":"<正> 金属物理物理与冶金之间的一门边缘学科,也是物理学科或冶金学科中的一门分支。它的基本任务在于研究金属与合金的物理原理,阐述金属与合金的行为所根据的基本物理概念与经验规律,联系金属与合金的微观结构与宏观性能之间的关系,以进一步利用化学和物理方法来改变其性能。 该书作者在绪论中说:“本书的主要内容为研究金属与合金的微观组织结构和化学成分与性能的关系,从电子、原子及各种晶体缺陷的运动和相互作用来说明金属及合金中的各种宏观规律和转变过程”。","authors":[{"authorName":"钱临照","id":"5fdde2a9-e563-4d3e-b3cd-c5e477757267","originalAuthorName":"钱临照"}],"categoryName":"|","doi":"","fpage":"279","id":"57cdd83b-e62c-4ba0-801c-5a64cafaf5b2","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1965_2_5","title":"“金属物理”上册","volume":"8","year":"1965"},{"abstractinfo":"对三种组织状态的F-M复相钢进行了对称和非对称循环加载条件下的形变研究.结果表明,双相钢的循环变形行为,不仅与组织中位错组态的演变过程有关,同时也受循环载荷大小、类型以及加载方式所影响.分析表明,双相钢的循环硬化、软化行为主要受控于两个基本过程,即循环变形时位错组态演变的物理过程和相间分载应力的转嫁、相间残余应力变化的力学过程.","authors":[{"authorName":"柴东朗","id":"4733a17b-37e9-41bc-aba7-5dc205077273","originalAuthorName":"柴东朗"},{"authorName":"史洪刚","id":"9af3d1db-f2dd-4727-a2f1-129babdd91bc","originalAuthorName":"史洪刚"},{"authorName":"沈亚鹏","id":"68b5b158-5c8f-4998-9b60-9f0edd7214a2","originalAuthorName":"沈亚鹏"}],"doi":"10.3969/j.issn.1004-244X.2002.05.006","fpage":"24","id":"975bcbad-f2fe-4f62-abd6-4054dfa05b9c","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"80e6c97b-b752-4fb0-97ca-e6e56350cfff","keyword":"复相材料","originalKeyword":"复相材料"},{"id":"a06d88db-afa9-4812-ae1f-dd6e597bc675","keyword":"位错组态","originalKeyword":"位错组态"},{"id":"a43436d0-ae1c-48b8-835a-531e9f0e7974","keyword":"循环变形行为","originalKeyword":"循环变形行为"}],"language":"zh","publisherId":"bqclkxygc200205006","title":"复相材料的循环变形行为","volume":"25","year":"2002"},{"abstractinfo":"合金物理与化学框架是由相互关联的原子团簇交迭模型、特征原子排列模型、特征晶体混合模型和性质变化数学模型组成,是金属材料系统科学框架的中枢.它使合金电子结构、晶体结构、热力学性质和物理性质相互关联.依据由此框架得到的特征原子序列和相应的特征晶体序列的结构参数和性质,便可进行无序和有序合金的单原子操纵设计,并能预计它们的电子结构、晶体结构、晶格常数、热力学性质和物理性质随成分的变化.\n","authors":[{"authorName":"谢佑卿","id":"86a7e03c-ff20-4a58-b5c8-e88db951a8ea","originalAuthorName":"谢佑卿"}],"doi":"","fpage":"3","id":"3bdf901b-df0b-4005-9044-9fbe06cb920d","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"841892d6-e5a2-43cc-9a2a-be11447b08c2","keyword":"材料科学","originalKeyword":"材料科学"},{"id":"56480e71-080e-4836-a358-d4c1a4b04bb2","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"95350310-efb3-4987-8173-07791680f51c","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"ec1565c9-783c-4f27-a41e-564797bd6c1c","keyword":"热力学性质","originalKeyword":"热力学性质"},{"id":"c038ec9f-c0e7-42c5-8b83-dd8b7e309363","keyword":"物理性质","originalKeyword":"物理性质"}],"language":"zh","publisherId":"cldb200108002","title":"合金物理与化学框架","volume":"15","year":"2001"},{"abstractinfo":"在强子层次上,原子核或强子物质的基本组元是核子和介子. 弄清这些强子的结构,并由基本原理出发研究它们的性质,是当代核物理的重要课题. 在各种介子中,π介子是最轻且最重要的介子. 关于自由空间中π介子的结构与性质、核介质内π介子的性质、π-核子相互作用与π-核相互作用等问题,始终受到相当多的关注. π介子在核物理中的作用直接联系着手征对称性,汤川秀树关于π介子的最初概念已经大大发展了. 有清楚的实验证据表明,核内存在π介子的集体模式,这种集体模式与以前观测到的所有核集体运动模式截然不同. 拟对π-核物理的研究现状及值得进一步研究的主要问题予以简要评述.","authors":[{"authorName":"李磊","id":"553234a0-d206-4d29-bcc6-78c434207030","originalAuthorName":"李磊"},{"authorName":"张小兵","id":"719e5c9f-8132-448e-8a2d-0ef2083f80af","originalAuthorName":"张小兵"},{"authorName":"谭玉红","id":"deaef318-63b6-47e9-8659-baf11455e684","originalAuthorName":"谭玉红"},{"authorName":"宁平治","id":"4c61a7a4-99ab-4f2d-ab97-2e57d2d47116","originalAuthorName":"宁平治"}],"doi":"10.3969/j.issn.1007-4627.2003.01.001","fpage":"1","id":"b3bfa495-a375-4e68-a00c-713549291164","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"c78ce44c-d237-4d04-92ee-2f995aeaa703","keyword":"π介子的结构和性质","originalKeyword":"π介子的结构和性质"},{"id":"e7e1ddc2-570f-4145-a838-1751c72690eb","keyword":"π-核相互作用","originalKeyword":"π-核相互作用"},{"id":"82aab6d8-2012-4430-9245-7595ae1c56ee","keyword":"核内的π介子","originalKeyword":"核内的π介子"},{"id":"6de023fa-4457-4f58-b31d-8e321bb67179","keyword":"核物质中的π介子","originalKeyword":"核物质中的π介子"}],"language":"zh","publisherId":"yzhwlpl200301001","title":"核物理中的π介子","volume":"20","year":"2003"},{"abstractinfo":"本文测定了多晶Al在恒应变循环变形下的循环硬化曲线和循环应力-应变曲线,并用透射电镜(TEM)观察了相应的位错亚结构。本文着重探讨循环变形与位错组态的关系及晶界在循环变形中的作用。","authors":[{"authorName":"陈贤芬","id":"9d08ec54-2e8d-4cf5-ae21-e9ea722aeebd","originalAuthorName":"陈贤芬"},{"authorName":"林栋樑","id":"b7bcd6bf-d0fe-47e0-9d5b-fc5be5e645ab","originalAuthorName":"林栋樑"}],"categoryName":"|","doi":"","fpage":"169","id":"20eacf4f-614f-4bcc-a1fb-75dfdc3e8c65","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1984_3_6","title":"多晶Al的循环变形","volume":"20","year":"1984"},{"abstractinfo":"基于兰州重离子加速器国家实验室(HIRFL)的中能放射性核束线(RIBLL)及北京串列加速器国家实验室(HI-13)的低能放射性核束线(GIRAFFE),开展放射性核束物理和核天体物理研究,拟解决的关键科学问题是: 远离β稳定线核的结构与反应; 超重新核素及近滴线核素的合成和性质研究,极端同位旋非对称核物质特性和关键的天体核反应研究. 研究内容分成7个课题: (1)晕核研究; (2)新核素合成及超重新核素研究; (3)丰中子核结构和反应 ; (4)丰质子核结构和反应; (5)高自旋的同位旋相关性; (6)关键天体核反应; (7) 系统的理论研究. 上述研究也将是2005年建成的国家大科学工程——兰州冷却贮存环的主要科学目标的研究基础. 简述了近期的主要工作进展.","authors":[{"authorName":"沈文庆","id":"1e946540-6833-4c8c-86c1-3e1ddd562107","originalAuthorName":"沈文庆"},{"authorName":"詹文龙","id":"ca28a975-02f0-4dae-a0b8-3807e68b1c4a","originalAuthorName":"詹文龙"},{"authorName":"叶沿林","id":"6cf427b7-dff0-4a11-8ad8-1e3d439b81ae","originalAuthorName":"叶沿林"},{"authorName":"柳卫平","id":"cbe86058-22f6-4f05-a4d8-957e0c67ac84","originalAuthorName":"柳卫平"},{"authorName":"靳根明","id":"481985fc-0914-49ea-827e-e1a0412bd2a7","originalAuthorName":"靳根明"},{"authorName":"周小红","id":"6abd4c71-2ff2-40ce-831a-bc9dac4cbd6e","originalAuthorName":"周小红"},{"authorName":"徐树威","id":"58901174-1838-4df8-abcf-69d447821a31","originalAuthorName":"徐树威"},{"authorName":"竺礼华","id":"9dd74e2e-1a7d-4375-ae27-c2ae1114178c","originalAuthorName":"竺礼华"},{"authorName":"朱胜江","id":"56640afd-cd7d-4b44-a8c0-50274e279527","originalAuthorName":"朱胜江"},{"authorName":"刘祖华","id":"1bc437b3-6afb-4816-9289-a0c04e2ea05d","originalAuthorName":"刘祖华"},{"authorName":"孟杰","id":"3af60525-420f-4e5e-9122-0c16795edf6f","originalAuthorName":"孟杰"}],"doi":"10.3969/j.issn.1007-4627.2001.04.003","fpage":"206","id":"88a4e3df-3c06-49a4-a3d3-5813000f96aa","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"14700c05-a1f2-4296-814e-3f743cf6c64f","keyword":"放射性核束物理","originalKeyword":"放射性核束物理"},{"id":"3b898a99-1393-4bf7-b91e-946a50e7205f","keyword":"核天体物理","originalKeyword":"核天体物理"},{"id":"d74b6536-6a9a-4f30-99b3-980841b2263a","keyword":"重元素新核素","originalKeyword":"重元素新核素"},{"id":"d3d33406-9d80-43ff-be79-1143e6876948","keyword":"质子晕核","originalKeyword":"质子晕核"},{"id":"5a9a4329-6d3f-472a-bc0f-611a9d8ea71c","keyword":"晕激发态","originalKeyword":"晕激发态"}],"language":"zh","publisherId":"yzhwlpl200104003","title":"放射性核束物理与核天体物理","volume":"18","year":"2001"}],"totalpage":1425,"totalrecord":14250}