黄世新
,
杜楠
,
赵晴
,
艾莹珺
,
王力强
,
文庆杰
腐蚀与防护
doi:10.11973/fsyfh-201606004
采用动电位极化曲线、电化学阻抗谱、腐蚀形貌分析等方法研究了不同含量Fe3+溶液水解对304不锈钢点蚀行为的影响,并从动力学角度分析了蚀孔生长的过程.结果表明:随Fe3+含量的升高,水解产生的H+含量升高,使自腐蚀电流密度升高,而溶解氧去极化作用减弱,使得自腐蚀电位负移;由于氢去极化作用,电荷转移电阻逐渐减小,腐蚀速率加快;当Fe3浓度达到3.0 mol/L时,自腐蚀电流密度趋于平稳,金属离子的扩散控制了蚀孔生长,亚稳蚀孔向稳态蚀孔转变存在一个临界电流密度.
关键词:
304不锈钢
,
水解
,
蚀孔
,
点蚀
高明炜
,
童伟
,
叶跃威
,
黄良伟
,
何斌林
黄金
doi:10.11792/hj20170315
遂昌金矿二段球磨闭路的磨矿产品细度已经达到极限,致使尾矿中金、银品位难以进一步降低.对艾砂磨机与二段球磨机的磨矿效果及产品的氰化浸出效果进行了对比,并介绍了艾砂磨机在选冶车间二段磨矿中所进行的工业试验.结果表明:采用艾砂磨机开路磨矿替代原二段球磨闭路磨矿,其磨矿产品-74 μm从75 %提高到95 %,氰化尾渣金品位从0.35 g/t降低到0.12 g/t,银品位从13.17 g/t降低到7.4 g/t,指标较好,经济效益显著.
关键词:
艾砂磨机
,
球磨机
,
金
,
银
,
磨矿细度
,
浸出率
,
氰化尾渣
周梅
,
张飞
,
塔西甫拉提·特依拜
,
高宇潇
,
阿不都拉·阿不力孜
,
李瑞
环境化学
doi:10.7524/j.issn.0254-6108.2015.09.2015012708
为了解艾比湖流域地表水的水化学特征,利用SPSS17.0,ArcGIS等软件分析了该流域58个点位水化学指标,并按照地表景观特征分为6条路线,分别为绿洲①、沿沙漠边缘、艾比湖周边、绿洲②、山区周边和博河(博尔塔拉河)至艾比湖沿线.结果表明:⑴基本特征:除pH外,其余各指标在艾比湖湖区周边的变异性很强,其余各处的变异较小.(2)各指标间的相关性: Cl-与Na+、Ca2+呈极显著相关,与SO2-4、K+、Mg2+呈显著相关,说明极易形成NaCl盐和硫酸盐.(3)空间分布:电导率、矿化度等指标的高值空间分布格局大体一致,都是以艾比湖为中心向南北两个方向逐步减小的空间分布格局,但pH的高值分布范围偏流域的西北部,并且HCO-3的高值分布范围比其它离子指标的范围大;各指标等值线的变异强度以艾比湖为中心向东西方向骤降.
关键词:
艾比湖流域
,
水化学特征
,
水质
,
空间分布
邹明
,
蒋明学
,
钱跃进
,
史晓琪
耐火材料
doi:10.3969/j.issn.1001-1935.2007.03.005
采用回转抗渣法模拟研究了试验温度、保温时间和熔渣加入量等因素对铝铬砖和镁铬砖抗艾萨炉炉渣侵蚀能力的影响.用SEM、EDAX及XRD等方法,对抗渣试样的显微结构和矿物组成进行了分析研究.结果表明:随着侵蚀温度的升高、保温时间的延长及炉渣加入量的增加, 铝铬砖和镁铬砖的侵蚀面积增大;熔渣渗入铝铬砖后,形成铁铝尖晶石和铁铬尖晶石保护层,阻止了熔渣的侵蚀;三种耐火材料抗艾萨炉炉渣侵蚀能力由强到弱为:铝铬砖>电熔再结合镁铬砖>直接结合镁铬砖.
关键词:
艾萨炉
,
铝铬砖
,
镁铬砖
,
抗渣性
,
模拟试验
杨波
,
陈勇川
,
向荣凤
,
杨丹
,
夏培元
,
刘松青
色谱
doi:10.3321/j.issn:1000-8713.2008.03.011
建立了测定人血浆中艾芬地尔的液相色谱-串联质谱方法.血浆样品用乙酸乙酯液-液提取后,以甲醇-6 mmol/L 乙酸铵溶液(pH 7.40)(体积比为90∶10)为流动相进行分离.在Q TRAPTM串联质谱仪上,以选择性反应离子监测(SRM)方式进行定量分析,用于监测的离子为m/z 326.1→308.2 (艾芬地尔)和m/z 531.0→82.1 (酮康唑,内标).在6 min内完成了艾芬地尔的检测,工作曲线的线性范围为0.25~50 μg/L,日内、日间精密度分别小于2.7%和6.5% ,平均回收率为101.3% ~105.0%,检测限为0.08 μg/L.本方法灵敏度高,特异性好,可以用于临床试验的血浆样品的检测.
关键词:
液相色谱
,
串联质谱
,
艾芬地尔
,
血浆
廖敏富
,
林翠梧
,
黄丽
,
许子竞
,
覃飒飒
,
李爱媛
应用化学
doi:10.3724/SP.J.1095.2011.00124
用蒸馏水溶解滇桂艾纳香浸膏,从中提取多糖,通过膜分离、三氯乙酸法脱蛋白、二乙氨基乙基(DEAE)纤维素脱色、SephadexG10、SephadexG50 凝胶柱色谱纯化,获得滇桂艾纳香水溶性多糖(BRP-B).由凝胶渗透色谱(HPGPC)确定 BRP-B 为相对分子质量分布均一的多糖,其数均分子量和质均分子量分别为2654 和 2716 Da.以血浆复钙时间(PRT)为指标,研究 BRP-B 的凝血活性,结果显示 BRP-B 质量浓度为6.25×10-2 g/L时,凝血时间为 248.52 s,凝血时间抑制率达 22.42%.小白鼠离体子宫实验结果显示,BRP-B质量浓度为1.67×10-2、1.97×10-2 及 2.85×10-2 g/L 时能明显增加子宫平滑肌的收缩频率.
关键词:
滇桂艾纳香
,
多糖
,
分离
,
纯化
,
止血活性
周丽君
,
李敬来
,
王晓英
,
乔建忠
,
张振清
色谱
doi:10.3724/SP.J.1123.2011.12081
运用高效液相色谱-电喷雾质谱(HPLC-ESI-MS)技术,建立了快速.简单、灵敏的比格犬静脉滴注艾普拉唑钠盐后血药浓度的检测方法.血浆样品采用蛋白沉淀法,以丁螺环酮作为内标,色谱柱为Teknokroma Kromasil C18(100 mm ×2.1 mm,5μm),流动相为水-甲醇-乙腈(69:8:23,v/v/v)(含0.1%的甲酸),流速0.2 mL/min,采用电喷雾(ESI)离子源以正离子方式检测.绘制血药浓度-时间曲线,并采用DAS 2.0计算药代动力学参数.方法学实验结果表明内源性杂质不干扰艾普拉唑和内标的测定,线性范围为5~10000μg/L (r=0.994),最低定量限为5μg/L,精密度和准确度均符合生物样品测定的要求.低、中、高3个浓度的绝对回收率在106%左右,基质效应小于142.0%,表明该方法适合比格犬血浆中艾普拉唑浓度的测定及药代动力学研究.比格犬静脉滴注艾普拉唑钠盐3个剂量(0.2 mg/kg、0.8 mg/kg和3.2 mg/kg)后的药-时曲线下面积(AUC(0-∞))分别为(2.4 × 104±3×103)、(8.8×104±1.6×104)和(5.4×105±8×104) μg/L.min,呈线性药物代谢动力学过程.
关键词:
高效液相色谱-电喷雾质谱
,
艾普拉唑
,
比格犬血浆
,
药代动力学
施介华
,
彭丽
色谱
doi:10.3724/SP.J.1123.2010.00959
采用胶束液相色谱法(MLC)分离测定血浆中苯巴比妥、艾司唑仑和氯硝西泮,运用三相平衡理论探讨了流动相中表面活性剂浓度(CM)、氢离子浓度(CH)、助表面活性剂浓度(Cφ)对溶质保留行为的影响,同时运用多元线性回归建立了保留因子的对数(log k)与溶质性质参数和流动相组成之间的相关模型.结果表明,溶质保留因子(k)随CM、Cφ和CH的增加而减小,与理论模型完全一致.而且log k与溶质的疏水性常数的对数(log P)和电离常数(Ka)以及CM、CH和Cφ之间呈现良好的多元线性关系.在确定的色谱条件下,血浆中的3种药物与其他组分之间有较好的分离效果.3种药物的血药浓度分别在2.5~50 mg/L、0.25~5.0 mg/L 和0.05~5.0 mg/L 间具有良好的线性关系.本方法简便、准确、重现性良好、灵敏度高.3种药物的最低检出限(S/N=3)分别为10.27、1.17、0.867 ng,平均加标回收率范围分别为99.80% ~102.9% ,94.00% ~98.20%和96.30% ~98.70% .
关键词:
胶束液相色谱
,
苯巴比妥
,
艾司唑仑
,
氯硝西泮
,
血浆
王小平
,
张飞
,
于海洋
,
KUNG Hsiang-te
环境化学
doi:10.7524/j.issn.0254-6108.2017.03.2016070104
地表水溶解性总固体(TDS)是地表水各组分浓度的总指标,是地表水水化学特性长期演变的最终结果,也是表征水文地球化学作用过程的重要参数,TDS的高低直接影响地表水的含盐量.本研究以艾比湖流域为研究对象,结合实测地表水TDS数据;选用准同步的Landsat OLI数据,首先,利用光谱诊断指数选取与地表水TDS相关性较高的波段,其次,利用地统计方法、多元线性回归模型和支持向量机(SVM)模型对TDS进行预测,并对其结果进行精度比较.结果表明,SVM模型为最优估测模型,拟合决定系数R2为0.97,均方误差(RMSE)为50.59;多元线性回归模型的精度与SVM模型精度较为接近,拟合决定系数R2为0.9,RMSE为66.55;地统计克里格插值法预测精度最低,拟合决定系数R2为0.87,RMSE为95.73.遥感估测SVM模型预测值在大区域能较好地反映出艾比湖流域TDS的总体特征.该模型在水质遥感领域的应用中具有良好的可行性和有效性,其预测结果也与艾比湖流域水体TDS的实际分布相吻合,因此遥感估测SVM模型在水质估测中具有一定的应用潜力.
关键词:
TDS
,
SVM模型
,
多元线性回归模型
,
地统计
,
艾比湖流域