{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过对焙烧温度、焙烧时间及钙钒比的正交试验和单因素试验,掌握了钒渣钙化焙烧最优参数组合.分析了钒渣钙化焙烧过程中钒、铁及碳酸钙的变化情况,同时针对冷却制度对钒渣焙烧效果的影响进行了讨论.试验表明,适合工业生产的控制方案为:焙烧温度890~920℃、焙烧时间1.5~2.5 h,内配钙钒比(CaO/V2 O5)0.5 ~0.7,冷却时间40~60 min、冷却结束温度400~600℃,在此条件下进行焙烧,钒渣的转浸率为87.27%.","authors":[{"authorName":"曹鹏","id":"caf2d907-fb99-4773-aabb-6f9e4b48118c","originalAuthorName":"曹鹏"}],"doi":"","fpage":"30","id":"d08ac3fc-518f-42df-936a-dfc997c4e68b","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"27ac92ef-b395-4354-8349-ee131472d7cd","keyword":"钒渣","originalKeyword":"钒渣"},{"id":"c6f43888-a778-4349-b639-ea04a95e9955","keyword":"钙化焙烧","originalKeyword":"钙化焙烧"},{"id":"8b53c2f5-f43f-44d9-95ed-0028b9751c11","keyword":"温度","originalKeyword":"温度"},{"id":"e7bdc1ef-7ebb-4d85-8428-fd8f6660081c","keyword":"时间","originalKeyword":"时间"},{"id":"3d48116c-2658-4877-b338-953a9d1c1b9c","keyword":"钙钒比","originalKeyword":"钙钒比"},{"id":"75be5f1f-ab0d-4bf5-af39-0f777395a097","keyword":"转浸率","originalKeyword":"转浸率"}],"language":"zh","publisherId":"gtft201201007","title":"钒渣钙化焙烧试验研究","volume":"33","year":"2012"},{"abstractinfo":"针对钒渣钙化焙烧温度过高导致物料烧结、回转窑结圈的问题,采用提高焙烧气氛氧含量的方法,强化焙烧动力学条件,降低焙烧温度,并进行了富氧钙化焙烧实验室试验和工业试验研究.研究结果表明:在控制尾气氧含量12%~14%的情况下,焙烧温度从富氧前的920~940℃降低到富氧后的870 ~ 885℃,降低了约50℃;工业试验过程中,物料绝大部分为粉料,回转窑运行正常,焙烧获得的钒转浸率为89.58%.采用钒渣富氧钙化焙烧技术,解决了焙烧设备不能正常运行的问题,实现了钒渣不配尾渣直接焙烧.","authors":[{"authorName":"付自碧","id":"19f73a83-f4dc-4463-a0b9-204404b6a970","originalAuthorName":"付自碧"},{"authorName":"彭毅","id":"39bdd544-bcb7-4cd9-b2a5-c681c1479ac8","originalAuthorName":"彭毅"},{"authorName":"何文艺","id":"66127056-d885-4d89-af20-c4e13a46bb12","originalAuthorName":"何文艺"},{"authorName":"高官金","id":"06cb7d30-935f-4a6c-933b-dd897680cf25","originalAuthorName":"高官金"},{"authorName":"申彪","id":"a9873168-87aa-4693-8d92-2ea5e0f60932","originalAuthorName":"申彪"},{"authorName":"卢晓林","id":"a71e6149-ba63-4815-be57-87d0000c6004","originalAuthorName":"卢晓林"}],"doi":"10.7513/j.issn.1004-7638.2014.04.001","fpage":"1","id":"76672400-5d87-4d95-9acf-9ec174c1a987","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"697f92a2-5690-4b36-9b8d-615b58e238a5","keyword":"钒渣","originalKeyword":"钒渣"},{"id":"ea432d13-34e2-4c59-91a8-0082d7f15507","keyword":"钙化焙烧","originalKeyword":"钙化焙烧"},{"id":"1a366fd3-7c1d-4c04-a333-accef1fc3f7e","keyword":"富氧","originalKeyword":"富氧"},{"id":"30f2a328-8d17-4ef5-900b-e0e305864cb6","keyword":"焙烧温度","originalKeyword":"焙烧温度"}],"language":"zh","publisherId":"gtft201404001","title":"钒渣富氧钙化焙烧试验研究","volume":"35","year":"2014"},{"abstractinfo":"钒渣钙化焙烧物料烧结,造成钒渣转浸率低,严重时将阻碍生产顺行.对钒渣钙化焙烧过程中物料烧结的原因及影响因素进行了研究.结果表明:当焙烧温度超过焙烧产物熔点时,低熔点物质由固相向液相转化,随着回转窑转动发生剧烈翻滚,形成直径较大的球状烧结料;焙烧温度和混合料中磁性物是影响物料烧结的主要因素;焙烧温度高于900℃,烧成带距离延长,低熔点物质拥有足够的时间形成较多的液相,发生烧结;混合料磁性物含量高,焙烧过程中氧化放热所升高的温度与焙烧温度发生叠加,局部温度可达1 000℃,使物料烧结严重.","authors":[{"authorName":"王春琼","id":"3d83d099-c646-422e-8669-fc241a6c7914","originalAuthorName":"王春琼"},{"authorName":"刘武汉","id":"e0292083-9e5a-46c0-874e-13f97096cac3","originalAuthorName":"刘武汉"},{"authorName":"刘恢前","id":"21d36c99-2ae1-4488-8dea-eb4471728b6f","originalAuthorName":"刘恢前"},{"authorName":"朱福平","id":"e2ab82c3-3d62-4154-b3b9-3be211b17402","originalAuthorName":"朱福平"},{"authorName":"张林","id":"db2e8b59-da26-4d48-bdfa-65a9e73c2b7c","originalAuthorName":"张林"},{"authorName":"孙玉中","id":"8fed412d-0444-4745-8176-d181d66f968a","originalAuthorName":"孙玉中"}],"doi":"10.7513/j.issn.1004-7638.2013.06.002","fpage":"6","id":"d71cb6f5-dade-45ab-9cdb-1b22b6f585cc","issue":"6","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"5117f431-2336-4bfb-9eef-8b9144d41b35","keyword":"钒渣","originalKeyword":"钒渣"},{"id":"b4fbafde-98aa-470d-8dbc-67e74194071e","keyword":"钙化焙烧","originalKeyword":"钙化焙烧"},{"id":"4a6b28a1-4ca3-4a56-b761-bf3da1532371","keyword":"烧结","originalKeyword":"烧结"},{"id":"07c43c83-4d78-49d3-98e7-0b450049dd70","keyword":"温度","originalKeyword":"温度"},{"id":"8e1ecd0e-df25-463e-a055-2b5fb3568b52","keyword":"磁性物","originalKeyword":"磁性物"}],"language":"zh","publisherId":"gtft201306002","title":"钒渣钙化焙烧烧结现象研究","volume":"34","year":"2013"},{"abstractinfo":"研究了钙基添加剂对低品位钼精矿焙烧性能的影响。结果表明,钙基添加剂可与钼精矿反应生成 CaSO4和 CaMoO4。450°C 时 MoS2开始氧化,500°C 以上生成 CaMoO4和 CaSO4,600~650°C 时钙化反应基本完成;进一步提高焙烧温度有利于 CaMoO4的生成,但会降低焙烧过程固硫率和钼保留率。钙基添加剂焙烧效果依次为Ca(OH)2>CaO>CaCO3。随着 Ca(OH)2用量的增加,钼保留率和固硫率均呈上升趋势,但过多的钙基添加剂会使酸浸过程硫酸的消耗增加,Ca(OH)2与钼精矿适宜的质量比为1:1。在650°C 下焙烧90 min 时,低品位钼精矿钙化焙烧过程中钼保留率为100%、固硫率为92.92%,经硫酸浸出后钼的浸出率达到99.12%。","authors":[{"authorName":"甘敏","id":"5c731e35-0783-43f7-bb29-d8a6c25c0963","originalAuthorName":"甘敏"},{"authorName":"范晓慧","id":"7d73a1ce-5926-496e-8bac-b1623c1e58b5","originalAuthorName":"范晓慧"},{"authorName":"陈许玲","id":"66da3e36-69d4-4ec3-8c36-e28a09f8bb84","originalAuthorName":"陈许玲"},{"authorName":"吴程骞","id":"df4119c1-a3d3-439a-bf10-74a30eb3a705","originalAuthorName":"吴程骞"},{"authorName":"季志云","id":"4689fba2-c433-46c3-8fd7-9f17ee941c53","originalAuthorName":"季志云"},{"authorName":"王送荣","id":"67194c37-2c0e-4d32-bc45-0b08b59c1e27","originalAuthorName":"王送荣"},{"authorName":"汪国靖","id":"b8d016c4-8b40-4c32-b730-3c5488cd0f62","originalAuthorName":"汪国靖"},{"authorName":"邱冠周","id":"bfe0ceb7-7e7f-407f-bce8-198622986ab7","originalAuthorName":"邱冠周"},{"authorName":"姜涛","id":"dade6af8-d68f-4aa8-b4ae-3fd199bdc28b","originalAuthorName":"姜涛"}],"doi":"10.1016/S1003-6326(16)64432-1","fpage":"3015","id":"5daff2a4-06f6-4973-8dfd-c43bc5c72181","issue":"11","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"16b57e3c-034c-43a5-91c5-bedb899820d3","keyword":"钼精矿","originalKeyword":"钼精矿"},{"id":"ff7d89cc-a42e-4788-be54-3fca1519a036","keyword":"钙化焙烧","originalKeyword":"钙化焙烧"},{"id":"a68ea446-796e-4004-87d3-9a8ac0f3bf7b","keyword":"反应机理","originalKeyword":"反应机理"},{"id":"afd7c13b-eff5-4de2-b749-ceb794c784b7","keyword":"热力学研究","originalKeyword":"热力学研究"},{"id":"6dd40087-6f44-4ffd-9907-13f0b2320d9f","keyword":"相变","originalKeyword":"相变"}],"language":"zh","publisherId":"zgysjsxb-e201611026","title":"低品位钼精矿钙化焙烧的反应机理","volume":"26","year":"2016"},{"abstractinfo":"针对钒渣钙化焙烧硫酸浸出工业化生产中存在的钒浸出率低的问题,对熟料粒度、磁性物,以及浸出温度对钒浸出率的影响进行了研究.结果表明:+178 μm熟料比例达到20%、熟料中磁性物含量达到2%、低温浸出是影响钒浸出率的主要原因;优化后参数为:熟料粒度-178μm比例≥98%、熟料中磁性物含量小于0.2%、浸出终了温度高于50℃,钒浸出率可达92.46%以上.","authors":[{"authorName":"王春琼","id":"cf3e96de-d429-4592-a879-9cc7d1e3ab08","originalAuthorName":"王春琼"}],"doi":"10.7513/j.issn.1004-7638.2016.01.006","fpage":"26","id":"2c933ae8-5d74-4490-9880-7b48b8a33ac0","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"a312f8f3-608b-4756-9c88-4c18deeee981","keyword":"钒渣","originalKeyword":"钒渣"},{"id":"b4931119-ad0c-40ef-9acb-d42291d59d65","keyword":"钙化焙烧","originalKeyword":"钙化焙烧"},{"id":"81aeecf1-925b-4eb8-a4f7-32e1d50f2f56","keyword":"含钒熟料","originalKeyword":"含钒熟料"},{"id":"d0e96c69-b6d4-452a-94e1-50726fda6342","keyword":"硫酸浸出","originalKeyword":"硫酸浸出"},{"id":"5e7191be-d5ba-4973-b53e-706e2a63d350","keyword":"浸出率","originalKeyword":"浸出率"}],"language":"zh","publisherId":"gtft201601006","title":"钙化焙烧含钒熟料硫酸浸出工艺研究","volume":"37","year":"2016"},{"abstractinfo":"通过SEM,XRD和测量离子浓度的方法,研究了预钙化对医用钛合金表面沉积钙磷层的诱导作用.结果表明,在用化学方法对钛合金进行表面改性的过程中,预钙化明显增强羟基磷灰石在钛合金改性表面上的沉积能力.","authors":[{"authorName":"张芳","id":"76f2ae2f-6a5a-4dc2-9a78-e9d61b92eb26","originalAuthorName":"张芳"},{"authorName":"崔春翔","id":"b69fbf11-1353-4347-97a2-b62a75b4fca1","originalAuthorName":"崔春翔"},{"authorName":"戚玉敏","id":"8c41735f-5f6f-4eb7-b6ee-cf8b859bd7f2","originalAuthorName":"戚玉敏"},{"authorName":"刘双进","id":"b81a1cbb-4c24-4cad-b613-c2bb6a3c300d","originalAuthorName":"刘双进"}],"doi":"10.3969/j.issn.1009-9964.2005.03.005","fpage":"18","id":"a31f61d3-e06f-40ac-9598-618bf65ef554","issue":"3","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"f97d83d7-a237-4c3b-ad03-1ee862992af7","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"738f9a02-da26-4a13-9e4b-fd4be15af6b0","keyword":"预钙化","originalKeyword":"预钙化"},{"id":"eb2504ee-333a-41a9-980e-b5e4ad28e0b2","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"}],"language":"zh","publisherId":"tgyjz200503005","title":"预钙化对医用钛合金表面沉积钙磷层的影响","volume":"22","year":"2005"},{"abstractinfo":"针对钒渣钙化焙烧-酸浸提钒工艺在工业试验过程中暴露出来的问题,以攀钢钒渣为原料,对影响提钒效果的关键工艺参数进行了研究.主要考察了混合料CaO/V2O5、熟料粒度、熟料金属铁、酸浸浆料终点pH值对钒转浸率的影响,焙烧气氛氧化性对最佳焙烧温度、浸出液P浓度对沉钒效果的影响.研究结果表明,在混合料CaO/V2 O5 0.54 ~ 0.70、熟料粒度为-0.096 mm、熟料金属铁≤2%和浆料终点pH≤4.1时可获得较好的钒转浸率;当焙烧进气氧含量为15%(相应尾气氧含量~12.5%)时,最佳焙烧温度为850 ~870℃,相应的钒转浸率为88.29% ~88.66%;酸性浸出液TV 32 g/L左右时,P浓度应控制在0.06 g/L以下.","authors":[{"authorName":"付自碧","id":"abce60c7-f64e-4d01-891a-742dd92bdbd9","originalAuthorName":"付自碧"}],"doi":"10.7513/j.issn.1004-7638.2014.01.001","fpage":"1","id":"c10f4903-c10f-4ac4-a997-9699741a362c","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"1abb075b-41ea-4276-85e5-6b60e7ef18a2","keyword":"钒渣","originalKeyword":"钒渣"},{"id":"9d3c1b36-4956-41bb-93ec-48b1803e87a1","keyword":"钙化焙烧","originalKeyword":"钙化焙烧"},{"id":"c10d7efd-580f-4c9c-9a81-33beb517e914","keyword":"酸浸","originalKeyword":"酸浸"},{"id":"68536247-12cc-4813-a4b0-264db0445e43","keyword":"钒转浸率","originalKeyword":"钒转浸率"}],"language":"zh","publisherId":"gtft201401001","title":"钒渣钙化焙烧—酸浸提钒试验研究","volume":"35","year":"2014"},{"abstractinfo":"针对含钒钙化熟料酸浸过程中因金属铁还原而出现浸出液变黑、钒转浸率下降等问题,进行了含钒钙化熟料中金属铁含量、酸浸pH值、酸浸时间等工艺参数对酸浸效果影响的试验研究.结果表明,当酸浸pH≈2.8和酸浸时间~ 60 min时,钙化熟料金属铁含量应控制在2%以内,钒转浸率为86%;当钙化熟料金属铁含量大于2%时,应控制酸浸pH≈3.0,酸浸时间~45 min,存放时间≤120 min,此时能有效降低金属铁对钒转浸率的影响程度,钒转浸率可控制在80%以上.","authors":[{"authorName":"卢晓林","id":"f25e8a60-54b8-49eb-aad3-d817870eaf8a","originalAuthorName":"卢晓林"},{"authorName":"付自碧","id":"99606370-e5cb-4394-947b-4f683a6d567c","originalAuthorName":"付自碧"},{"authorName":"何文艺","id":"630432be-a2f8-4aef-b7cf-bd686c76cdbf","originalAuthorName":"何文艺"},{"authorName":"申彪","id":"83f4af09-cf50-44e1-b22a-b1247a6d272d","originalAuthorName":"申彪"},{"authorName":"尹丹凤","id":"255006e3-6246-4d59-9843-5fc557882fbb","originalAuthorName":"尹丹凤"},{"authorName":"王春琼","id":"463e3369-b88f-4165-b003-b4077f85a744","originalAuthorName":"王春琼"}],"doi":"10.7513/j.issn.1004-7638.2014.04.003","fpage":"14","id":"e04ddd11-050f-4c08-9dd1-a2a28091fc60","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d8927476-36ec-4b68-b230-0f2acc5966fd","keyword":"氧化钒","originalKeyword":"氧化钒"},{"id":"feffc9e9-2bf1-4446-b486-f5610cae3bc4","keyword":"钙化熟料","originalKeyword":"钙化熟料"},{"id":"13193ce0-5ae6-4665-b90d-7ab41601c7bf","keyword":"酸浸","originalKeyword":"酸浸"},{"id":"28197a3d-5e57-404b-bdf8-2e5e5fc70189","keyword":"金属铁","originalKeyword":"金属铁"},{"id":"7896a773-20c9-4737-b447-e26da21031a4","keyword":"钒转浸率","originalKeyword":"钒转浸率"}],"language":"zh","publisherId":"gtft201404003","title":"金属铁对含钒钙化熟料酸浸过程的影响","volume":"35","year":"2014"},{"abstractinfo":"采用粉末冶金方法制备多孔钛样品,孔隙率约为40%,最大孔径为240 μm.经过NaOH溶液、热处理后,多孔钛再在Na2HPO4溶液和饱和Ca(OH)2溶液中分别浸泡进行预钙化处理.未经预钙化处理的样品在SBF中浸泡,形成表面磷灰石涂层约需28 d的时间.经过预钙化的样品在SBF中浸泡只需4 d,这说明预钙化过程大大提高了多孔钛的生物活性.其作用机理为:预钙化过程中样品表面的钛酸钠水解,形成带负电的Ti-OH基团,使Ca2+离子吸附到表面.在SBF中浸泡时,表面附近在短时间内达到钙-磷过饱和.且Ca2+离子增大表面附近的pH值,Ca2+离子和PO43-离子、OH-离子的活度积增大,刺激了磷灰石成核并形成涂层.除碱热处理并预钙化的样品外,其余样品表面磷灰石的Ca/P原子比均小于人体自然骨的Ca/P原子比.涂层的结晶细小而薄,不破坏多孔钛的孔隙结构.","authors":[{"authorName":"梁芳慧","id":"11d1d146-8908-409a-b1fa-47f26bdb4690","originalAuthorName":"梁芳慧"},{"authorName":"王克光","id":"4e51eb6f-a181-4662-bee8-032899103070","originalAuthorName":"王克光"},{"authorName":"周廉","id":"d8e1322f-67c0-42da-8459-27ac3df751ac","originalAuthorName":"周廉"}],"doi":"","fpage":"1013","id":"793eaddd-8c33-455e-b78b-478f4abee125","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8de8bf2f-1a4e-4b86-b24f-3971bd03c288","keyword":"钛","originalKeyword":"钛"},{"id":"1fe4dfc4-f087-4198-9d84-335e71008be8","keyword":"多孔钛","originalKeyword":"多孔钛"},{"id":"c8e7d533-958c-4dfd-8f75-a4fa656290ad","keyword":"碱热处理","originalKeyword":"碱热处理"},{"id":"a51e4211-ee67-4d8e-9301-839a39663929","keyword":"磷灰石","originalKeyword":"磷灰石"},{"id":"412a7f1e-4c84-462b-ac53-a1c6c56a765c","keyword":"涂层","originalKeyword":"涂层"},{"id":"a43771ff-1300-4759-b37f-309272ab9ebf","keyword":"预钙化","originalKeyword":"预钙化"}],"language":"zh","publisherId":"xyjsclygc200410002","title":"利用预钙化处理提高碱热处理多孔钛的表面生物活性","volume":"33","year":"2004"},{"abstractinfo":"千万名心脏瓣膜病患者依靠人工心脏瓣膜恢复了健康和学习工作的能力,但人工心脏瓣膜远来达到理想的水平,还存在着急待解决和提高的诸多问题.介绍了近年来人工心脏瓣膜研究进展情况.","authors":[{"authorName":"陆颂芳","id":"957af120-51a4-4112-8b94-68b31f4708b2","originalAuthorName":"陆颂芳"},{"authorName":"奚廷斐","id":"60d7052f-fbb2-48fb-ac87-8090ab9829a1","originalAuthorName":"奚廷斐"}],"doi":"","fpage":"11","id":"a0317861-994f-42f9-9dc1-9c98a171307f","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"70ca15ea-e266-43d8-a174-6d50844c3f9d","keyword":"人工心脏瓣膜","originalKeyword":"人工心脏瓣膜"},{"id":"1346a8d1-9c7d-480f-bf5e-61f9036bb9e9","keyword":"钙化","originalKeyword":"钙化"},{"id":"6b516b59-ec71-41f7-97b3-ef3331066f39","keyword":"组织工程","originalKeyword":"组织工程"}],"language":"zh","publisherId":"cldb200010005","title":"人工心脏瓣膜研究进展","volume":"14","year":"2000"}],"totalpage":7,"totalrecord":69}