{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究纯镍丝材单向微拉伸塑性变形过程中的流动应力和非均匀变形行为尺寸效应。实验发现,流动应力随晶粒尺寸的增加(或直径方向上晶粒数量的减少)而降低,而非均匀变形程度增加。当直径方向上少于9.3个晶粒时,流动应力随晶粒尺寸增加而快速降低。通过引入晶界尺寸因子构建介观尺度材料本构模型揭示丝材微拉伸流动应力尺寸效应。结果表明,断裂应变和断裂应力随着晶粒尺寸的增加而减小。当试样直径方向上少于14.7个晶粒时,断裂应变和断裂应力快速降低,表明微拉伸过程中的非均匀变形程度随着直径方向上晶粒数量的减小而增加。当试样直径方向上的晶粒数量减少时,断口形貌变得越来越不规则。从材料微观组织分布方面分析了不规则断口形貌的形成机理。","authors":[{"authorName":"传杰","id":"28e6ebfe-3eb4-4f22-8444-aebf9aa0ab0a","originalAuthorName":"王传杰"},{"authorName":"","id":"1ff15a73-cbb3-486b-8e0d-bcfc70b288b4","originalAuthorName":"王春举"},{"authorName":"徐杰","id":"8f087d50-a69a-4e29-9c5a-f4d3a08d098a","originalAuthorName":"徐杰"},{"authorName":"张鹏","id":"34d436a0-fed2-4d82-9b18-5b9fc1d7c8df","originalAuthorName":"张鹏"},{"authorName":"单德彬","id":"162ae005-f9cc-49f5-a081-2b604a31f0e8","originalAuthorName":"单德彬"},{"authorName":"郭斌","id":"fc4c3f89-f22e-487d-9af7-bab3931ca061","originalAuthorName":"郭斌"},{"authorName":"振龙","id":"f431be66-1567-4caf-94a7-810a89659308","originalAuthorName":"王振龙"}],"doi":"10.1016/S1003-6326(16)64287-5","fpage":"1765","id":"2deb9f13-b948-442c-94d3-eb7c98c5f0a6","issue":"7","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"f28cdc07-6d98-43bd-abe4-dfd9b387a5f6","keyword":"镍丝","originalKeyword":"镍丝"},{"id":"1094766f-319b-49af-b66f-3799f57107ed","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"c9ccbe8d-4b3a-45c3-9c52-977ff83ed6dc","keyword":"微拉伸","originalKeyword":"微拉伸"},{"id":"83527859-794f-4ece-9d29-0648276f6d0d","keyword":"流动应力","originalKeyword":"流动应力"},{"id":"0697062f-dacb-4e05-a90d-9d9424af86a1","keyword":"非均匀变形","originalKeyword":"非均匀变形"},{"id":"13884933-abb3-44cc-964c-28bba8255327","keyword":"断裂","originalKeyword":"断裂"}],"language":"zh","publisherId":"zgysjsxb-e201607005","title":"直径方向上仅有几个晶粒时纯镍丝材的拉伸变形行为","volume":"26","year":"2016"},{"abstractinfo":"针对微塑性成形工艺的特点,选择压电陶瓷作微驱动器,研制出微塑性成形专用设备,实现了在较小位移内获得较大输出载荷.使用研制的设备开展微型零件成形工艺研究.对微型齿轮件的成形质量进行分析表明,微型齿轮齿面光滑,表面质量好;在横截面上流线与齿轮轮廓一致,利于提高成形件的综合机械性能.使用3003铝合金箔板研究了微型杯的拉深成形工艺,分析了工艺参数对微拉深成形的影响规律,成功的拉深出最小外径为1mm的微型杯件.以上结果表明,微塑性成形技术能够批量地成形出高质量的微型零件.","authors":[{"authorName":"郭斌","id":"ed8e36fa-e956-4d0b-9f39-cd2842ba3189","originalAuthorName":"郭斌"},{"authorName":"","id":"a091f071-0e13-463f-9555-c3efe2e2020f","originalAuthorName":"王春举"},{"authorName":"单德彬","id":"4b737f61-8678-413e-9748-623459df2938","originalAuthorName":"单德彬"},{"authorName":"周健","id":"7f2ca82f-9d59-4f0f-9e2b-f88a87740b37","originalAuthorName":"周健"}],"doi":"10.3969/j.issn.1007-4252.2008.01.061","fpage":"278","id":"14fab97e-b8c3-47b6-9a1a-dda36682695c","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"8a609c42-a80b-49b9-92a9-ba73c3d3a10b","keyword":"微塑性成形","originalKeyword":"微塑性成形"},{"id":"93e838c3-1b93-4c25-b1b5-e0380ae068c6","keyword":"微塑性成形专用设备","originalKeyword":"微塑性成形专用设备"},{"id":"69a9b358-013d-4671-bc37-c8b8a154e6ac","keyword":"微型齿轮","originalKeyword":"微型齿轮"},{"id":"b577f457-d765-478a-8ddd-7e6b5df95333","keyword":"微型杯","originalKeyword":"微型杯"}],"language":"zh","publisherId":"gnclyqjxb200801061","title":"基于微塑性成形的微型零件批量制造技术","volume":"14","year":"2008"},{"abstractinfo":"介绍了塑性微成形技术的发展背景及其基本特点,综述了尺寸效应及其对微塑性成形工艺的影响、微型构件微塑性成形工艺以及微成形装置的研究现状,并对其发展趋势进行了预测.","authors":[{"authorName":"单德彬","id":"9ec352e7-3f1e-426a-b3dc-7692a5ee9180","originalAuthorName":"单德彬"},{"authorName":"郭斌","id":"dc63697d-edb2-4cee-9e62-f89c42dde8eb","originalAuthorName":"郭斌"},{"authorName":"","id":"d09b538d-20c5-4297-9a9d-08e3b4054364","originalAuthorName":"王春举"},{"authorName":"周健","id":"9a046de2-34fb-4a36-a099-fae4e5837538","originalAuthorName":"周健"},{"authorName":"袁林","id":"85c990cd-8171-45e1-bd1d-f2feabc59783","originalAuthorName":"袁林"}],"doi":"10.3969/j.issn.1005-0299.2004.05.001","fpage":"449","id":"19f42d9d-52e1-43a3-bde0-13b495df5a47","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"95bfbc56-dc3e-4fe8-bea6-934df76b52ca","keyword":"微塑性成形技术","originalKeyword":"微塑性成形技术"},{"id":"4bcfdac6-183f-4e64-8f83-ed2559dba955","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"cc8c8a06-c087-4b24-9962-15fc2981933c","keyword":"微型构件","originalKeyword":"微型构件"}],"language":"zh","publisherId":"clkxygy200405001","title":"微塑性成形技术的研究进展","volume":"12","year":"2004"},{"abstractinfo":"微型化导致微弯曲变形与宏观弯曲有明显差异.研制了一套三点微弯曲模具,并基于CMT8502型微机控制电子万能试验机平台,使用C2680黄铜箔进行三点微弯曲正交实验,获得了一系列三点微弯曲力和冲头位移曲线.研究表明,坯料厚度越小,弯曲半径越大,相对厚度越大时,回弹量越大.在本试验中,坯料厚度对回弹的影响最明显,其次是相对厚度,弯曲半径对回弹的影响程度最小.","authors":[{"authorName":"","id":"8c20e57a-4b09-47d4-9b0e-ce822359f7e1","originalAuthorName":"王春举"},{"authorName":"汪鑫伟","id":"e85c33f6-c0a7-40e2-895f-65c015e6f434","originalAuthorName":"汪鑫伟"},{"authorName":"郭斌","id":"7fe684cb-1163-410c-b15d-fda2d8f95131","originalAuthorName":"郭斌"},{"authorName":"单德彬","id":"ffabe798-5d6c-4d81-82e6-9cf4cc78b2fb","originalAuthorName":"单德彬"}],"doi":"","fpage":"5","id":"261bbcae-43a4-42e2-8694-89ef24b29bec","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"5976d478-02bb-4b69-b981-313128944c7a","keyword":"微弯曲","originalKeyword":"微弯曲"},{"id":"2ced9aff-b9f7-4fb2-9af8-7ba6cb324c0c","keyword":"C2680黄铜箔","originalKeyword":"C2680黄铜箔"},{"id":"b0b4825e-839d-4f97-ac13-ed2b2f5b91e3","keyword":"回弹","originalKeyword":"回弹"},{"id":"d7236feb-7112-4ece-84da-a9ddd068b309","keyword":"相对厚度","originalKeyword":"相对厚度"}],"language":"zh","publisherId":"clkxygy200901002","title":"C2680黄铜箔微弯曲回弹规律研究","volume":"17","year":"2009"},{"abstractinfo":"为便于取出微正挤压零件,设计了具有分瓣式结构的微正挤压凹模,并成功成形出最小挤出杆直径为0.25 mm的微正挤压件.采用扫描电子显微镜(SEM)及金相显微镜对微正挤压件的表面形貌及微观组织进行了观察.结果表明,随着挤出杆尺寸的减小或晶粒尺寸的增大,内外层材料的非均匀塑性变形程度增加;当挤出杆尺寸降低到亚毫米尺度时,微挤压成形件发生了一定弯曲;微正挤压件纵向和横向微观组织的非均匀分布表明,在微正挤压成形过程中材料在纵向和横向上都经历了严重的非均匀塑性变形.材料的非均匀塑性变形程度是随着挤出杆尺寸的减小或晶粒尺寸的增加而不断增加的.","authors":[{"authorName":"传杰","id":"0cfe68d3-7456-4cba-a40e-67829fb6993e","originalAuthorName":"王传杰"},{"authorName":"","id":"6a9ca082-7d7d-46b5-b881-fa559500ff5a","originalAuthorName":"王春举"},{"authorName":"程利冬","id":"a6dda709-cb14-46c1-9265-cfb8ea1d636f","originalAuthorName":"程利冬"},{"authorName":"郭斌","id":"b8ac13d3-63e2-4a3f-9cc2-01b8a5e9ed05","originalAuthorName":"郭斌"},{"authorName":"单德彬","id":"ba5b2d75-f21e-424c-b92a-d7668dcd441c","originalAuthorName":"单德彬"}],"doi":"","fpage":"139","id":"6c249079-17e7-49b4-a814-2801e2498dd5","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e6be55a8-69ad-4cbb-9407-5bd7db37a3b5","keyword":"微成形","originalKeyword":"微成形"},{"id":"df0b2f17-7abb-45aa-ab8d-2f62712e51d3","keyword":"正挤压","originalKeyword":"正挤压"},{"id":"2da36feb-624a-4145-ad67-a747a09c9d26","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"a429dcc2-ff21-476b-816d-5dba52595fc9","keyword":"T2紫铜","originalKeyword":"T2紫铜"},{"id":"e8f9ce29-79ff-406f-be8b-14ce7b05102d","keyword":"表面形貌","originalKeyword":"表面形貌"},{"id":"0320a2ca-ab83-4b57-96f5-e905b170ff88","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"bebedf54-f1aa-4ac2-8818-702e8f4adf01","keyword":"非均匀变形","originalKeyword":"非均匀变形"}],"language":"zh","publisherId":"clkxygy201305023","title":"T2紫铜微正挤压件表面形貌与微观组织分析","volume":"21","year":"2013"},{"abstractinfo":"采用自行研制的微成形系统进行热压缩实验,分别研究成形温度、成形时间和冲头速度等对尺寸为d1 mm×1.5 mm的Zr41.2Ti13.8Cu12.5Ni10Be22.5块体非晶合金(Vit.1)在过冷液相区微塑性成形性能的影响规律.进一步研究了不同坯料尺寸对Vit.1块体非晶合金在过冷液相区超塑性成形性能的影响程度,结果表明流动应力随坯料尺寸的减小而降低.在此基础上,利用闭式模锻方法成形了分度圆直径为d1 mm的微型齿轮,采用SEM观察成形件的表面形貌,结果表明采用微成形方法可以获得尺寸精度较高的Vit.1块体非晶合金微型齿轮.","authors":[{"authorName":"郭晓琳","id":"a243f706-861c-4eda-8a60-b9cffb9ec20a","originalAuthorName":"郭晓琳"},{"authorName":"","id":"bcd2ac63-1cc0-4588-b294-c02b418d6c5d","originalAuthorName":"王春举"},{"authorName":"周健","id":"40a6724e-da14-4773-85a5-71fde812bfe3","originalAuthorName":"周健"},{"authorName":"单德彬","id":"4ab50b9e-cae6-4d4a-af8e-cebad679848b","originalAuthorName":"单德彬"},{"authorName":"郭斌","id":"2ef63b75-3ea8-42a8-9d54-41915e087df7","originalAuthorName":"郭斌"}],"doi":"","fpage":"1190","id":"6f350a6d-f0e6-4bdf-a470-b1e327da7d80","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"6e11e5e2-bc47-4849-96c3-955d639d48bb","keyword":"Zr基非晶合金","originalKeyword":"Zr基非晶合金"},{"id":"48e14590-6c0b-41b2-b97c-577913f3dc43","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"},{"id":"9d3436eb-4c8e-432a-b73f-1ec8310368e3","keyword":"过冷液相区","originalKeyword":"过冷液相区"},{"id":"6a135004-81a4-4ff9-8301-74b8067d888c","keyword":"微成形性能","originalKeyword":"微成形性能"},{"id":"75f8827e-7488-433f-b030-e2b02c5f753a","keyword":"微型齿轮","originalKeyword":"微型齿轮"}],"language":"zh","publisherId":"zgysjsxb200607010","title":"Zr基块体非晶合金的微塑性成形性能","volume":"16","year":"2006"},{"abstractinfo":"对T2紫铜箔板进行电磁微成形实验,研究不同模具结构对材料成形性能的影响.采用激光共聚焦显微镜及轮廓仪研究不同模具结构对箔板电磁微成形的影响规律,分析模具结构对材料流动规律的影响.研究结果表明:随着电压的升高坯料出现不同程度的翘曲现象,采用凸型模具更有利于凹模内气体的排除,使得坯料能够迅速贴模;随着电压的升高材料成形性不断提高,采用凹型模具比采用凸型模具更加有利于微槽精度的提高;电磁成形制件应变分布均匀,凸型模具成形制件壁厚最小值出现在微槽侧壁,成形过程以拉深成形为主;凹型模具成形制件最小壁厚出现在微槽底部,成形过程以胀形为主.","authors":[{"authorName":"赵庆娟","id":"5ed3626f-5318-47dc-9b75-20c6a8ad25f0","originalAuthorName":"赵庆娟"},{"authorName":"","id":"b57ee810-a954-447f-bf5b-99f3388d0b70","originalAuthorName":"王春举"},{"authorName":"江洪伟","id":"34ebd9a4-7e20-42a2-ba3e-88df29530cc7","originalAuthorName":"江洪伟"},{"authorName":"于海平","id":"8d131217-7b5e-4d63-86c2-381cefae5c1b","originalAuthorName":"于海平"},{"authorName":"郭斌","id":"99c56c18-9b37-466c-beae-79887cfbf761","originalAuthorName":"郭斌"}],"doi":"","fpage":"80","id":"7dbf00e7-1940-4ffa-9c69-090a179cb0e1","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"d35e34b4-8f63-4227-9b8b-088fdc8afd3c","keyword":"高应变速率","originalKeyword":"高应变速率"},{"id":"23a22e57-07d4-4f01-afd1-c551ec2a98fc","keyword":"模具结构","originalKeyword":"模具结构"},{"id":"bda49a78-ba0b-438b-b302-4b0439dd6eff","keyword":"应变分布","originalKeyword":"应变分布"},{"id":"8e24c76a-a122-4394-ba26-1c55250fedc3","keyword":"成形精度","originalKeyword":"成形精度"},{"id":"10f1f2bf-89eb-497d-ad71-8c048cbfc755","keyword":"箔板微成形","originalKeyword":"箔板微成形"}],"language":"zh","publisherId":"clkxygy201304014","title":"模具结构对箔板电磁微成形的影响","volume":"21","year":"2013"},{"abstractinfo":"为了研究凸模速度、成形温度和成形载荷等热变形参数对5A02铝合金微型齿轮成形的影响规律,设计制造了微型齿轮模具,在自行研制的微塑性成形设备上,将压入高度比作为填充程度的评价参数进行了成形实验,成功获得了质量良好的节圆直径为Ф1 mm的5A02铝合金微型齿轮.研究结果表明,压入高度比可以很好地定量表示微型齿轮闭式模锻的填充程度,成形载荷是影响微型齿轮填充程度的主要因素,降低凸模速度、提高成形温度有利于提高微型齿轮的填充程度.","authors":[{"authorName":"周健","id":"71a3eb05-f88c-43c6-aecc-ea02660ece7a","originalAuthorName":"周健"},{"authorName":"","id":"2648b574-2af7-4a59-83eb-500ca9935eeb","originalAuthorName":"王春举"},{"authorName":"单德彬","id":"056268ef-6477-4fdd-aa40-58f84d41c038","originalAuthorName":"单德彬"},{"authorName":"郭斌","id":"c44cb63e-f8f4-4281-983c-8c18d8c2e5b9","originalAuthorName":"郭斌"}],"doi":"10.3969/j.issn.1005-0299.2006.02.010","fpage":"144","id":"baf2c639-a953-452b-bacb-1c8f9f3d28c0","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"69433c4d-df2c-4e5e-a58f-fd63c041f556","keyword":"热变形参数","originalKeyword":"热变形参数"},{"id":"b3ce089f-e643-44b1-b30f-fcb121a0cc2e","keyword":"微型齿轮","originalKeyword":"微型齿轮"},{"id":"4b9e9c85-df63-4ca1-a7fa-693da7995293","keyword":"微塑性成形","originalKeyword":"微塑性成形"},{"id":"553c53bb-bc76-43f2-adac-34930f33971d","keyword":"压入高度比","originalKeyword":"压入高度比"}],"language":"zh","publisherId":"clkxygy200602010","title":"热变形参数对微型齿轮成形影响的实验研究","volume":"14","year":"2006"},{"abstractinfo":"鉴于摩擦对微型零件塑性微成形过程的影响随表面积与体积之比增加而显著增大的现象,本文对微型齿轮零件成形设计了浮动式微型模具结构,并进行了等温成形实验研究.结果表明:可浮动凹模将摩擦阻力变为积极摩擦力,提高了坯料向模腔的填充能力,有效降低了成形载荷;对成形件的分析表明,成形件有良好的表面质量和微观组织结构.","authors":[{"authorName":"","id":"4ee1fa57-ee06-4178-86d1-1f8e4973fe82","originalAuthorName":"王春举"},{"authorName":"单德彬","id":"41a85754-8b7f-4115-a12b-529c6fa7b0d7","originalAuthorName":"单德彬"},{"authorName":"郭斌","id":"1bf1b265-3279-4777-a750-7888f4b1ab51","originalAuthorName":"郭斌"},{"authorName":"周健","id":"be5eb30e-4d4f-495d-9cf2-afd08c814d96","originalAuthorName":"周健"}],"doi":"","fpage":"11","id":"eaeb6053-9968-42f1-9e24-1cc2940393c8","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"6bfff788-862b-4bd8-829b-a1ed5594418b","keyword":"塑性微成形","originalKeyword":"塑性微成形"},{"id":"8dcf6519-5f9d-4cc2-a49c-700ca210f3bd","keyword":"浮动式模具","originalKeyword":"浮动式模具"},{"id":"f5921bd0-9d20-44ca-87ad-40130e8f785a","keyword":"积极摩擦力","originalKeyword":"积极摩擦力"},{"id":"e5dc707a-41df-4a37-accc-4100e3c11ed3","keyword":"微型齿轮","originalKeyword":"微型齿轮"}],"language":"zh","publisherId":"clkxygy201104003","title":"基于浮动式模具成形微型齿轮工艺研究","volume":"19","year":"2011"},{"abstractinfo":"本文利用Zr41Ti14Cu12.5Ni10Be22.5(Vit1)块体非晶合金对不同宽度的微通道阵列进行充填实验,并研究了形腔宽度、压印载荷与温度对微通道阵列充填高度的影响规律.实验结果表明,随着型腔宽度和压印载荷的增加,微通道充填高度逐渐上升.这就意味着较高的载荷和型腔宽度有利于Vit1块体非晶合金在微通道中了流动.成形温度由673 K上升至703 K时,微通道充填高度由9.1μm增加至46.6 μm;然而,当实验温度达到713 K时,微通道阵列的充填高度急剧下降至26.9 μm.XRD结果显示,在713 K下成形后的试样中存在大量亚稳态的晶化相,非晶基体中的晶化相会增大材料的流动阻力,从而降低其对微通道阵列的充填能力.因此,Vit1合金微通道阵列成形温度区间应控制在673~703 K.","authors":[{"authorName":"程思锐","id":"8154812f-edf8-4fbc-8cfa-558334695ae2","originalAuthorName":"程思锐"},{"authorName":"","id":"d0ef8f18-853b-4c8a-81b7-251c13870b32","originalAuthorName":"王春举"},{"authorName":"单德彬","id":"57e07463-0b92-4e18-9773-5b63960a5568","originalAuthorName":"单德彬"},{"authorName":"郭斌","id":"e871ccb6-2f59-4d13-9d1d-de95444593fe","originalAuthorName":"郭斌"}],"doi":"10.11951/j.issn.1005-0299.20160358","fpage":"10","id":"7dc1d177-3197-42b2-a985-f0049f814d5a","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"54e5e21e-e3c1-4bc1-8e2f-36b8d5b7d7d5","keyword":"Zr基块体非晶合金","originalKeyword":"Zr基块体非晶合金"},{"id":"c75b9735-a9e1-4eac-9796-78cfae03a8cd","keyword":"Si模具","originalKeyword":"Si模具"},{"id":"bb01f63e-690d-4b83-814c-b115bc972942","keyword":"微通道阵列","originalKeyword":"微通道阵列"},{"id":"6636e42f-aec2-4645-a24d-6120b79ab9b3","keyword":"压印","originalKeyword":"压印"},{"id":"e883e878-47ae-41ee-8759-618384401acb","keyword":"微成形性能","originalKeyword":"微成形性能"}],"language":"zh","publisherId":"clkxygy201702002","title":"Zr基块体非晶合金微通道阵列过冷液相区压印工艺","volume":"25","year":"2017"}],"totalpage":12,"totalrecord":115}