{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用数值积分方法建立了冷连轧在线轧制力模型,确定了轧制力模型自适应的执行条件和计算流程.针对轧制力模型自适应指数平滑算法中难以用固定增益系数适应轧制状况变化的问题,提出了一种根据实测数据动态调整增益系数的方法,建立了增益系数与测量值等效置信度之间的数学关系式.该轧制力模型自适应算法已应用在某1450 mm 5机架冷连轧机组上,通过比较自适应前后的计算值与实测值的均方差可知,采用模型自适应后,轧制力模型的计算精度显著提高.","authors":[{"authorName":"张殿华","id":"47216963-10a5-43b8-afc5-1f9b868ed86a","originalAuthorName":"张殿华"},{"authorName":"陈树宗","id":"6fe061a5-00c7-411b-89f9-e9fb0a3f5c58","originalAuthorName":"陈树宗"},{"authorName":"孙杰","id":"449e1f22-2744-4e0b-b780-34682f0c0dd7","originalAuthorName":"孙杰"},{"authorName":"宋君","id":"b41fa1f8-a574-44d8-9e14-be8384045ffb","originalAuthorName":"宋君"},{"authorName":"王军生","id":"2de80597-a740-4de1-82e1-e7f1ec859825","originalAuthorName":"王军生"}],"doi":"","fpage":"30","id":"aac6cf9a-5ac9-4777-813c-5b26fa237084","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"f8034d37-ec9a-4993-895a-ed722644bf90","keyword":"冷连轧","originalKeyword":"冷连轧"},{"id":"848b69c6-4e08-41b4-8be4-fa5cf3b1b250","keyword":"轧制力模型","originalKeyword":"轧制力模型"},{"id":"e601ea4e-45f3-47d4-927a-a674e2d2fa54","keyword":"置信度","originalKeyword":"置信度"},{"id":"4bb26df0-e2c5-44a1-b29a-0b4010ec86ef","keyword":"模型自适应","originalKeyword":"模型自适应"}],"language":"zh","publisherId":"gtyjxb201301007","title":"基于实测值置信度的冷连轧轧制力模型自适应","volume":"25","year":"2013"},{"abstractinfo":"简要介绍了唐钢1 800 mm 5机架冷连轧机组的工艺参数、仪表配置及过程控制模型设定系统.从轧制过程在线数学模型、基于成本函数的多目标优化负荷分配和模型自适应3个方面对该冷连轧过程控制模型设定系统进行了深入分析研究.现场应用表明,该L2过程控制系统运行稳定,模型设定系统制定的轧制规程合理、模型设定计算具有非常高的精度,满足在线控制的要求.","authors":[{"authorName":"陈树宗","id":"6450531d-e5ef-4061-8ef4-0d0eb7d9b831","originalAuthorName":"陈树宗"},{"authorName":"张殿华","id":"211271c9-22dc-48e8-a420-d2c7078a7700","originalAuthorName":"张殿华"},{"authorName":"刘印忠","id":"4884957e-76a6-4965-9cf2-ec21ec7fa039","originalAuthorName":"刘印忠"},{"authorName":"李旭","id":"9b24ce46-7443-4db8-9a7f-a6d2ca4ecb7a","originalAuthorName":"李旭"},{"authorName":"彭良贵","id":"8db52998-351a-4c25-bfd3-e035e2be0a15","originalAuthorName":"彭良贵"}],"doi":"","fpage":"13","id":"29a3dbdb-38a2-459c-862a-512edc90b97c","issue":"10","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"3e3ff9dd-b404-4f9b-b5f0-956691a0c459","keyword":"冷连轧","originalKeyword":"冷连轧"},{"id":"41834c28-c734-4152-86a0-59a5c1ce6bca","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"778b878b-d61b-449d-b882-db760de109bd","keyword":"过程控制","originalKeyword":"过程控制"},{"id":"4ca64d1e-437c-4dc9-8322-e0acf35b1b41","keyword":"模型自适应","originalKeyword":"模型自适应"},{"id":"a37b2fb8-c2e6-4bc1-b392-5f117fd6c1c6","keyword":"负荷分配","originalKeyword":"负荷分配"}],"language":"zh","publisherId":"zgyj201210004","title":"唐钢1 800 mm 5机架冷连轧机过程控制模型设定系统","volume":"22","year":"2012"},{"abstractinfo":"在自适应控制技术的基础上,针对宝山钢铁集团公司热轧厂层流冷却系统的特殊工艺环境建立了一种自适应温降模型,以克服传统解析模型预设定精度低的缺点.冷却控制结果表明,这种具有自适应能力的温降模型是一种可用于控制不确定的复杂过程的理想模型.","authors":[{"authorName":"范晓明","id":"a5f9fdca-ed81-4ee5-ad73-a421f2664d5b","originalAuthorName":"范晓明"},{"authorName":"张利","id":"f36296d8-960f-4d0e-bcb9-3052a1a2a04f","originalAuthorName":"张利"},{"authorName":"王国栋","id":"08553d2a-7599-4631-ad67-d708db0520ff","originalAuthorName":"王国栋"},{"authorName":"蔡家虹","id":"e5850e09-8094-4fce-89eb-b28ba2440875","originalAuthorName":"蔡家虹"}],"doi":"","fpage":"70","id":"60de0769-f739-40e7-a0ee-ca75896cc0a7","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"041e5519-9c4e-41f6-9835-a6015ea0fc8c","keyword":"热轧带钢","originalKeyword":"热轧带钢"},{"id":"b0950b91-4d18-42f7-ad19-bbafa6785ac1","keyword":"卷取温度","originalKeyword":"卷取温度"},{"id":"a7408bff-ec5b-48b8-b24a-95d2357686d3","keyword":"自适应控制","originalKeyword":"自适应控制"},{"id":"5c088d5a-b832-4692-86a1-76dac9a8fdd9","keyword":"解析模型","originalKeyword":"解析模型"}],"language":"zh","publisherId":"gtyjxb200003016","title":"用于带钢卷取温度控制的自适应模型","volume":"12","year":"2000"},{"abstractinfo":"为了改善微光情况下可见光图像传感器输出图像的质量,提出了一种基于高斯混合模型的自适应微光图像增强算法.对图像的直方图进行混合高斯建模,应用改进的期望最大化算法对直方图拟合,从而获取高斯混合模型的最优参数,然后根据各个聚类的交点将直方图分区,最后确定输出图像所属聚类的映射关系,同时应用保持最大熵方法逼近人类视觉特性映射函数得到最终的增强图像.实验结果表明,此图像增强模型能自适应确定最佳聚类个数,提高直方图拟合的运算速度,一帧图像平均处理时间为0.37 s,在相关信息熵和纹理信息等的客观评价中,增强结果明显优于传统方法,有效地提高了微光图像的对比度,同时保持了图像的细节.","authors":[{"authorName":"陈莹","id":"99dd94e1-cc37-453a-a074-46fd2d67049d","originalAuthorName":"陈莹"},{"authorName":"朱明","id":"c2e1378d-503e-48a4-9988-e68154a78abe","originalAuthorName":"朱明"},{"authorName":"刘剑","id":"0ebb8a97-0973-4b94-b329-667b6caca86d","originalAuthorName":"刘剑"},{"authorName":"李兆泽","id":"df5a28b8-7281-47d1-a073-423a80db6ca4","originalAuthorName":"李兆泽"}],"doi":"10.3788/YJYXS20153002.0300","fpage":"300","id":"285efb8b-4c85-4630-96ad-f86303b3f6b8","issue":"2","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"d7e5695e-a1da-4160-976b-b7a607b5519e","keyword":"图像增强","originalKeyword":"图像增强"},{"id":"d2a2f20d-1a39-4e70-ae56-252a0f0df9d4","keyword":"直方图","originalKeyword":"直方图"},{"id":"dc93da60-aa13-40bd-a834-1de7433c5683","keyword":"高斯混合模型","originalKeyword":"高斯混合模型"},{"id":"2e1cecc6-4c77-4cba-9c21-78bff992dec6","keyword":"微光图像","originalKeyword":"微光图像"}],"language":"zh","publisherId":"yjyxs201502019","title":"高斯混合模型自适应微光图像增强","volume":"","year":"2015"},{"abstractinfo":"介绍了玻璃窑炉控制过程的特性和参数特点,对玻璃窑炉的传统控制方式(PID控制)的缺点进行了分析.提出了一个基于无模型自适应控制器(MAF)的玻璃窑炉过程控制方案.通过对MFA控制技术的介绍和MAF技术在玻璃窑炉这样一个连续、非线性、多变量的工业过程中的应用,说明玻璃窑炉过程控制能在新技术的帮助下,获得满意的控制结果.","authors":[{"authorName":"王干一","id":"3e7ae2d3-1afc-41de-9403-d9d33500e3dd","originalAuthorName":"王干一"},{"authorName":"吴春诚","id":"dc84c879-6031-44a5-b977-dfccc6121c90","originalAuthorName":"吴春诚"},{"authorName":"吴相林","id":"5c7d238a-c179-41fb-a579-1d2f58cfda32","originalAuthorName":"吴相林"}],"doi":"10.3969/j.issn.1001-1625.2007.01.035","fpage":"159","id":"62803e71-7d6f-4c3c-82d6-ebc035344755","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"07620f1f-1531-4f84-9320-743f48baea96","keyword":"玻璃窑炉","originalKeyword":"玻璃窑炉"},{"id":"d3598458-ec67-4b84-9528-432818c1c3fd","keyword":"无模型自适应控制(MFA)","originalKeyword":"无模型自适应控制(MFA)"},{"id":"0347a89d-086c-4a2c-853d-ef01a4b75a5b","keyword":"PID控制","originalKeyword":"PID控制"}],"language":"zh","publisherId":"gsytb200701035","title":"玻璃窑炉的无模型自适应控制","volume":"26","year":"2007"},{"abstractinfo":"针对目前加热炉钢坯温度预报模型的边界条件缺乏自适应性的问题,提出了一种基于神经元网络辨识的在线自适应钢坯温度预报模型,并引入粗轧机组后面的钢坯温度实时检测信号作为反馈修正钢坯温度预报.工业试验和仿真研究皆表明,该自适应钢坯温度预报模型精度高、自适应性好、鲁棒性强.","authors":[{"authorName":"王中杰","id":"3796314b-64eb-44ba-8ee0-3ab70c70e739","originalAuthorName":"王中杰"},{"authorName":"关守平","id":"e97121cb-36da-4abe-98cf-58ecbdaf2521","originalAuthorName":"关守平"},{"authorName":"柴天佑","id":"acff2c0b-bd89-49ac-b14a-c0fef09b0ee9","originalAuthorName":"柴天佑"}],"doi":"","fpage":"70","id":"2f77b7d3-c916-410b-ad70-378cde713bb5","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"60b01100-8415-4fc6-a61f-f60e70c5d145","keyword":"加热炉","originalKeyword":"加热炉"},{"id":"46c39a9b-894f-4ee6-b0c6-87913bb85246","keyword":"钢坯温度预报","originalKeyword":"钢坯温度预报"},{"id":"c69a84ce-b350-43c0-b856-b326efd2998a","keyword":"自适应","originalKeyword":"自适应"},{"id":"d2633136-76ab-4d21-9c97-09383d934f2b","keyword":"神经元辨识","originalKeyword":"神经元辨识"}],"language":"zh","publisherId":"gtyjxb199902017","title":"加热炉自适应钢坯温度预报模型的开发","volume":"11","year":"1999"},{"abstractinfo":"针对某热轧厂层流冷却系统的技术改造,建立了一套水冷及空冷的自适应温降模型,模型已通过模拟现场轧钢的ALPHA机上的离线集成测试,结果表明,这种具有自适应能力的水冷及空冷温降模型比以往采用单一综合换热系数的温降模型具有更高的稳定性和精度,实用性强,能够满足现场生产需要.","authors":[{"authorName":"韩斌","id":"4c9f5f15-3100-4752-82c2-944a64b9a5d1","originalAuthorName":"韩斌"},{"authorName":"于明","id":"cc170457-618d-42dc-8642-9dd966e123e4","originalAuthorName":"于明"},{"authorName":"王国栋","id":"0773975d-b9ce-4b94-bfa5-54fe967e6b98","originalAuthorName":"王国栋"},{"authorName":"刘相华","id":"76785ebf-5a20-4db2-98b4-9c3300b9c1c9","originalAuthorName":"刘相华"},{"authorName":"焦景民","id":"00fa8ad7-ed6b-4753-87b8-8eb00ce743f0","originalAuthorName":"焦景民"},{"authorName":"佘广夫","id":"1f130238-2e02-4737-b1ef-3eb1c1d7fa2b","originalAuthorName":"佘广夫"},{"authorName":"张中平","id":"703ef4c1-dd98-46ff-aef7-39758b87a76a","originalAuthorName":"张中平"},{"authorName":"王丹","id":"08fdcb25-601c-4241-9f95-cb165722d1b6","originalAuthorName":"王丹"}],"doi":"","fpage":"50","id":"0716eb66-5f0b-4748-a61e-d6bbf97819b2","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1be7acd1-e5bd-44dd-a508-73e805588a2b","keyword":"层流冷却","originalKeyword":"层流冷却"},{"id":"6b299b41-7fdc-4a59-84ee-b2dc3160b930","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"9fe752a7-e7ca-447e-b41d-d89b39bca5ab","keyword":"自适应","originalKeyword":"自适应"}],"language":"zh","publisherId":"gt200310014","title":"热连轧层流冷却系统设定模型的自适应","volume":"38","year":"2003"},{"abstractinfo":"平截面方法导出轧制力方程的一般形式是P=Hl′Q_Pξ。这四个因子可以独立地处理。 重点研究了应力状态系数Q_P的模型。从三次的实验结果,发现了即便对于板带冷轧,当l′/h小于一定值时,也会出现宏观的不均匀压下,平截面法得到的Q_P理论解不适用,应给以修正量ΔQ_P∞1/(l′/h). 共给出三种方案的Q_P模型: (1)分段统计分析的结果: 1)l′/h<4.2,Q~P=1.7025-0.0402 (R′/H)~(1/2)-0.1972γ (R′/H)~(1/2) l′/h≥4.2,Q_P=0.9599+0.0130(R′/H)~(1/2)+0.0254γ (R′/H)~(1/2) 2)Q_P=1.08+1.79μγ(R′/H)~(1/2)-1.02γ l′/h<4.2,μ=0.0917+10.6017/(ε)~2 l′/h≥4.2,μ=0.1059-0.0005ε (2)同时考虑均匀与不均匀变形的结果; U_P=0.6859-0.4962γ+0.0099 (R′/H)~(1/2)+0.1025γ(R′/H)~(1/2)+1.298(h/l′)或 Q_P=0.6903-0.5025γ+0.0572(l/h)+0.0186γ(l/h)+1.29(h/l′) (3)考虑出口弹性回复区对轧制压力的贡献: 1)Q_P~*=0.4364-0.1350γ+0.0229(R′/H)~(1/2)+0.0868γ(R′/H)~(1/2)+1.5 h/l′ 2)Q_P~*=1.08+1.79μ~*γ(R′/H)~(1/2)-1.02γ μ~*=0.0356/((l′/h)-2.503)+0.0559、 对多品种产品的轧机,它会有更好的适应性,但使计算复杂。 方案(2)的方程结构物理概念明确,对观测值有","authors":[{"authorName":"苏逢西","id":"b71fbc75-5437-4180-b7a6-d59da60a5df3","originalAuthorName":"苏逢西"},{"authorName":"梁国平","id":"2b0d27b9-f65d-44d5-8db5-2733f7bc4f3f","originalAuthorName":"梁国平"}],"categoryName":"|","doi":"","fpage":"406","id":"ef85b60f-3585-4d26-85b4-eda23e8a0e98","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1979_3_6","title":"冷轧压力模型及其自适应控制的研究","volume":"15","year":"1979"},{"abstractinfo":"通过不同工况下的实测压力波动值分析,得出了压力模型可能达到的精度。宝钢2050热连轧压力模型精度比较高,“k—μ”估计方法主要的功能是实现前滑模型的自适应,同时也可以提高压力预报精度。动态设定AGC投运不仅提高了厚控精度,而且提高了厚度、辊缝、压力自适应的效果。提出了轧件刚度d(单位面积的硬度)作为宝钢模型的基本量。经改进的宝钢2050热连轧压力计算模型便于推广应用。","authors":[{"authorName":"张进之","id":"7eafc53a-b0bc-40ed-9093-613bf81e9295","originalAuthorName":"张进之"},{"authorName":"王琦","id":"f84b88ae-5496-4c60-b5cc-dce06a949b54","originalAuthorName":"王琦"},{"authorName":"杨晓臻","id":"c72bf397-9e37-4ada-9531-1f6b551ff2f9","originalAuthorName":"杨晓臻"},{"authorName":"张宇","id":"36ab50d2-d2c0-43b2-a2c3-94967ebb1c2f","originalAuthorName":"张宇"}],"doi":"","fpage":"38","id":"386258d0-ced0-4050-9486-caf998b4162d","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b22a1d6a-b95a-4b3c-9317-424c0c7bc7ee","keyword":"预报精度","originalKeyword":"预报精度"},{"id":"473180d5-b295-4a7e-b85c-ee30b5120ac8","keyword":"自适应","originalKeyword":"自适应"},{"id":"9f8bcbb1-fb7b-4b1b-a8eb-b86f9d1c28dc","keyword":"“k—μ”估计","originalKeyword":"“k—μ”估计"},{"id":"bd559df3-f02b-4a39-961d-30d1ff30ad25","keyword":"反演","originalKeyword":"反演"}],"language":"zh","publisherId":"gt200107011","title":"宝钢2050 mm热连轧设定模型及自适应分析研究","volume":"36","year":"2001"},{"abstractinfo":"曳力模型对流态化模拟的准确性起着决定性作用.现有的非均匀曳力模型能否普遍适用于各种流态化操作条件还缺乏深入研究.本文基于多尺度最小能量理论和对流态化过程中介尺度结构特性的深入认识,提出了新的非均匀曳力模型(QC-EMMS模型),并开展了模型的流动自适应性研究.通过引入非均匀因子ψ,表征颗粒团特性参数(固含率)随操作条件的变化,引入基于整体气固滑移速度的状态雷诺数,表征随操作条件的变化而呈现不同非均匀度的流化状态,建立了宏观操作参数与局部曳力和颗粒团特性之间的关系,实现了模型的流动自适应性.经实际工况验证,该曳力模型具有较高的计算精度和良好的网格无关性.","authors":[{"authorName":"戴群特","id":"a5e0b91b-61d5-493e-9f25-72fe2c5614d6","originalAuthorName":"戴群特"},{"authorName":"陈程","id":"def5027e-be94-427f-8838-12c0fea1f71a","originalAuthorName":"陈程"},{"authorName":"祁海鹰","id":"54462aa4-00d6-472f-89c2-4dea58e91aaf","originalAuthorName":"祁海鹰"}],"doi":"","fpage":"785","id":"f2d5bcaa-e581-4dcb-869b-1a46e3fc488f","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8b552e27-2359-44d4-bb5f-5c1d0628b199","keyword":"介尺度,非均匀气固两相流","originalKeyword":"介尺度,非均匀气固两相流"},{"id":"d2cf1b3f-2747-4e25-8546-e163999176a9","keyword":"颗粒团","originalKeyword":"颗粒团"},{"id":"782c887f-668b-44b3-ac65-1d925f130adc","keyword":"曳力模型","originalKeyword":"曳力模型"},{"id":"036785ef-190b-4f2b-866c-9f9a044b9a9b","keyword":"流动自适应性","originalKeyword":"流动自适应性"}],"language":"zh","publisherId":"gcrwlxb201504019","title":"介尺度非均匀曳力模型的流动自适应性研究","volume":"36","year":"2015"}],"totalpage":1905,"totalrecord":19050}