{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用水热合成法,以TiO2粉体和NaOH为原料,成功地制备出了TiO2纳米管.用XRD,SEM,HRTEM,紫外吸收光谱分析仪和光谱辐射分析仪等手段对纳米管进行微观形貌、光学性能的表征,并探讨了其生长机理.结果表明,所得产物为锐钛矿和金红石混晶型TiO2纳米管,管壁为多层,管的外径分布在10 nm~50 nm,长度可达几微米甚至十几微米,呈开口状;TiO2纳米管的生长机理符合3-2-1D的生长模型,其紫外吸收光谱和光致发光光谱相对于原料粉均呈现出蓝移现象,光致发光光谱显示TiO2纳米管在可见光区的发光强度明显增强.","authors":[{"authorName":"梁建","id":"5354aed2-a8b9-42f3-93ae-0d41f1a6f983","originalAuthorName":"梁建"},{"authorName":"马淑芳","id":"581bf71d-3b3f-4ed6-911c-434e1e050ffa","originalAuthorName":"马淑芳"},{"authorName":"韩培德","id":"c875b57d-539d-40b3-9fa1-16992dccbf93","originalAuthorName":"韩培德"},{"authorName":"孙彩云","id":"9ce5de5b-ee39-4291-9fe8-bb64793622e1","originalAuthorName":"孙彩云"},{"authorName":"许并社","id":"6a8df3ca-a2ae-46b0-ab58-568c7204927e","originalAuthorName":"许并社"}],"doi":"","fpage":"287","id":"86762d1e-098f-45e7-b005-0cfb9f6ed08d","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"424cba69-f1c5-41d5-ac89-48035519f793","keyword":"水热合成法","originalKeyword":"水热合成法"},{"id":"913f911d-9b63-498f-9eb4-f59f25c8b37c","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"2ddf1b16-c865-4b81-b569-784277c31294","keyword":"多层管壁","originalKeyword":"多层管壁"},{"id":"2cdd2ac8-1c43-488b-9a0e-c166541193f1","keyword":"蓝移","originalKeyword":"蓝移"}],"language":"zh","publisherId":"xyjsclygc200502028","title":"二氧化钛纳米管的合成及其表征","volume":"34","year":"2005"},{"abstractinfo":"微管管壁上的原丝纤维可以描述成各项异性的二维赝自旋模型,其最小重复单元是三角形状的.在这个模型中存在三种不同的\"自旋-自旋\"相互作用.而每一维上的自由电子可以看作是赝自旋模型.那么,微管壁上的量子信息传递就可以用Lylod提出的激光控制量子计算的模型来解释.","authors":[{"authorName":"石春花","id":"947db597-ee2c-4d93-87e4-a583ad174b77","originalAuthorName":"石春花"},{"authorName":"邱锡钧","id":"17b1f37f-771c-4549-8e56-1a9e173d16cf","originalAuthorName":"邱锡钧"}],"doi":"10.3969/j.issn.1007-4627.2005.04.025","fpage":"407","id":"4d8c4f8a-f964-4d2a-b3f9-5d9edb9bbc87","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"f1dd272f-f42b-4b10-92a5-7d97571e583d","keyword":"微管","originalKeyword":"微管"},{"id":"64efd067-b20b-47aa-bc5c-fc1f7064e6a1","keyword":"量子","originalKeyword":"量子"},{"id":"656f83dd-0a36-439f-bcab-7ec71ac2480d","keyword":"赝自旋","originalKeyword":"赝自旋"},{"id":"f3efd820-aa0d-4e39-ab25-05ffd9750585","keyword":"传递","originalKeyword":"传递"}],"language":"zh","publisherId":"yzhwlpl200504025","title":"微管壁上量子信息的传递","volume":"22","year":"2005"},{"abstractinfo":"采用极值原理的功能平衡法,建立了空拔管壁厚的计算模型.结果表明,计算值与实验值吻合较好,表明该计算模型可以在工程实践中应用.","authors":[{"authorName":"温殿英","id":"f4d6c37f-301f-4a00-8931-e7b1de0ac49b","originalAuthorName":"温殿英"},{"authorName":"叶金铎","id":"9304c4d6-8b2b-4019-92e4-e053831467f5","originalAuthorName":"叶金铎"},{"authorName":"史津平","id":"abe96b0b-3347-46a5-a9df-eb404c80b7ca","originalAuthorName":"史津平"},{"authorName":"李国刚","id":"55b78d4f-3c21-4751-b287-6ab7448a5802","originalAuthorName":"李国刚"}],"doi":"","fpage":"35","id":"4db200e8-c774-4a62-8c66-8060915c0f72","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"108430f2-d8b9-474e-a9a6-df21edfd9dcb","keyword":"空拔","originalKeyword":"空拔"},{"id":"e96260e1-9975-4942-9bc4-56b52d670a6b","keyword":"钢管","originalKeyword":"钢管"},{"id":"103efe3b-5a5f-466d-aab9-ef7e6a00b596","keyword":"壁厚","originalKeyword":"壁厚"},{"id":"9fbecb61-7b54-4f83-9177-ed716c52e44e","keyword":"计算模型","originalKeyword":"计算模型"},{"id":"9ce29ef8-cd45-4282-a24a-26877499cf7b","keyword":"功能平衡法","originalKeyword":"功能平衡法"}],"language":"zh","publisherId":"gtyjxb200110008","title":"空拔管壁厚计算模型","volume":"13","year":"2001"},{"abstractinfo":"采用极值原理的功能平衡法,建立了空拔管壁厚的计算模型.结果表明,计算值与实验值吻合较好,表明该计算模型可以在工程实践中应用.","authors":[{"authorName":"温殿英","id":"93b4ec13-cd83-41d8-a07e-76f32a2bd262","originalAuthorName":"温殿英"},{"authorName":"叶金铎","id":"49b310fa-d7e0-4a6f-93de-d710cbc14ddd","originalAuthorName":"叶金铎"},{"authorName":"史津平","id":"cf96bcee-f358-4f1f-aad7-877700452579","originalAuthorName":"史津平"},{"authorName":"李国刚","id":"9ae3ee61-6024-4364-b4ad-ff8cc3b99df8","originalAuthorName":"李国刚"}],"doi":"","fpage":"35","id":"801b3934-e059-430f-908f-19c2535bc12b","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"04124aa6-5fee-4e1f-8b23-2130207e7a71","keyword":"空拔","originalKeyword":"空拔"},{"id":"dceff633-2211-47bf-aa3f-d9a1b38f17d6","keyword":"钢管","originalKeyword":"钢管"},{"id":"8f35d18f-e8dd-41f8-ac00-390261e9e109","keyword":"壁厚","originalKeyword":"壁厚"},{"id":"4ebb2d9b-ca15-4b55-89af-2a5471895df8","keyword":"计算模型","originalKeyword":"计算模型"},{"id":"609978f2-f11b-4cc8-95df-fedc71534016","keyword":"功能平衡法","originalKeyword":"功能平衡法"}],"language":"zh","publisherId":"gtyjxb200105008","title":"空拔管壁厚计算模型","volume":"13","year":"2001"},{"abstractinfo":"根据管状纤维缠绕制件的成形特点,以干纤维束横截面积、纤维体积含量、芯模尺寸及一个铺设行程中芯模转过的圈数为基本参数,给出了具有不同缠绕角管壁厚的计算方法;之后,根据缠绕管件具有周向均匀弹性模量的特点,将管件化分为管壁元,对其进行位移、应变、应力分析,并在管件上进行整合,从而提出一种纤维缠绕复合材料管在拉伸、剪切及弯扭载荷作用下的分析模型;最后将管壁厚计算方法和管壁元分析模型用于计算管件,并将理论计算结果与可得到的实验结果和有限元数值计算结果进行时比,结果表明,理论计算结果与实验结果均有较好的一致性.","authors":[{"authorName":"孙江","id":"44309a37-d735-4e74-93d1-456960b63519","originalAuthorName":"孙江"},{"authorName":"肖琪","id":"2c83f434-3db5-42a5-b16a-9c80e2d68de5","originalAuthorName":"肖琪"}],"doi":"10.3969/j.issn.1003-0999.2008.06.002","fpage":"5","id":"47f7d598-0db2-4991-a38d-0f74f5604779","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"1095c902-9a5e-4e75-9435-c67c774ce4f6","keyword":"纤维缠绕","originalKeyword":"纤维缠绕"},{"id":"216d1232-c060-47f1-87bd-142ef2a5c2aa","keyword":"管件","originalKeyword":"管件"},{"id":"cbe6a7c0-25cc-4284-96e4-664db6d706b4","keyword":"管壁厚","originalKeyword":"管壁厚"},{"id":"8061a26b-711a-4a53-8c64-0ab57ba8903f","keyword":"管壁元","originalKeyword":"管壁元"},{"id":"0072656c-3f95-4b3a-a539-be103ec0b71f","keyword":"分析模型","originalKeyword":"分析模型"}],"language":"zh","publisherId":"blgfhcl200806002","title":"管状纤维缠绕制件的管壁元分析模型","volume":"","year":"2008"},{"abstractinfo":"研究表明,影响空拉管壁厚变化的因素应是管坯的径厚比(D_H/S_H)以及相对拉伸应力。在生产条件下考虑两者联合影响所得到的临界系数D_H/S_H≈3.6—7.6,远比人们所沿用的D_H/S_H=5—6的范围宽。同时,从理论与实践两方面研究了诸如材质、道次变形量、拉伸道次、润滑、拉速以及模子参数等工艺条件对空拉管壁厚变化的影响规律,结果表明,它们都是通过改变K值而起作用的。本文得出了可用于生产、有较高精度的空拉管壁厚变化计算公式及曲线。","authors":[{"authorName":"姚若浩","id":"b98b22bb-f5e5-4384-9b0c-9a52b5ad24b8","originalAuthorName":"姚若浩"},{"authorName":"钟建华","id":"40cc115a-732f-4a7e-825a-6c6138a1f2e3","originalAuthorName":"钟建华"},{"authorName":"刘小林","id":"6405d9fa-ec66-4cd0-92d9-5cef4c5ea9c8","originalAuthorName":"刘小林"},{"authorName":"莫建平","id":"6edf4c2f-0658-43eb-9f6b-59b12848cf36","originalAuthorName":"莫建平"}],"categoryName":"|","doi":"","fpage":"124","id":"39a57324-0fa0-41f0-a897-57f75b7026f0","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1986_3_11","title":"影响空拉管壁厚变化因素的研究","volume":"22","year":"1986"},{"abstractinfo":"本文计算了不同脉管倾角和管壁材料下脉管管壁导热对自然对流换热的影响.发现脉管壁面导热对换热的影响不仅体现在增加了壁面的纯导热部分,更主要的是强化了脉管内的自然对流;壁面和内部气体的温度差异沿脉管轴向的变化是管壁导热强化自然对流的主要原因.","authors":[{"authorName":"丁文静","id":"76ed38c1-1148-4cae-816b-30f929ac599a","originalAuthorName":"丁文静"},{"authorName":"何雅玲","id":"f45d56da-f9d8-478d-b8c7-de1d94306044","originalAuthorName":"何雅玲"},{"authorName":"陶文铨","id":"46d0fcd7-706e-42b9-b57b-36d02c16c6a3","originalAuthorName":"陶文铨"}],"doi":"","fpage":"469","id":"e1c86f77-9108-4849-95cf-a18a263d0799","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8584b41f-a06d-4144-929e-68b4d058f46e","keyword":"管壁导热","originalKeyword":"管壁导热"},{"id":"5de89b12-ee30-4c72-bfbf-ae0089faa93a","keyword":"脉管","originalKeyword":"脉管"},{"id":"c0d4e8c5-5166-438f-9ae3-6566c471cc97","keyword":"倾斜圆柱","originalKeyword":"倾斜圆柱"},{"id":"7dfc82f6-2181-4b9a-a767-b5650fa9ad73","keyword":"自然对流","originalKeyword":"自然对流"}],"language":"zh","publisherId":"gcrwlxb200303031","title":"管壁导热对脉管内自然对流换热影响的研究","volume":"24","year":"2003"},{"abstractinfo":"建立了套筒式高炉氧煤枪管壁温度的数学模型,得到有关温度的计算值,并用带有多点热电偶的高炉套筒式氧煤枪测量了带旋流头和不带旋流头的套筒式氧煤枪外管的温度及枪头内部其他部位的温度分布.套筒式氧煤枪外管壁平均温度不超过600 ℃,与数学模型计算结果基本吻合.","authors":[{"authorName":"唐勇","id":"7ef9ae2a-eee7-48ec-b668-3cb4c453bc00","originalAuthorName":"唐勇"},{"authorName":"苍大强","id":"46b2e8c0-7577-4ea3-82e9-a9375ecf310d","originalAuthorName":"苍大强"},{"authorName":"陈濂","id":"272ca013-ea94-473c-878b-06da9322c237","originalAuthorName":"陈濂"}],"doi":"","fpage":"0","id":"22baf03f-7804-4b05-a45b-6474fcc4b81d","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"54e326df-22c4-4be1-a7dc-30b1ed09c527","keyword":"高炉喷煤","originalKeyword":"高炉喷煤"},{"id":"b0ba5a6b-b2ef-45cc-9c2c-9c55e78d78e4","keyword":"套筒式氧煤枪","originalKeyword":"套筒式氧煤枪"},{"id":"5ec318ec-d2ea-47fb-861b-f67974bf61a0","keyword":"壁温测量","originalKeyword":"壁温测量"}],"language":"zh","publisherId":"gt199803003","title":"高炉套筒式氧煤枪管壁温度的计算与测定","volume":"33","year":"1998"},{"abstractinfo":"采用约束爆破和自由膨胀爆破两种实验方法,研究了工业纯铁,Mn-B系空冷贝氏体钢等五种材料在爆破加载条件下管壁变形、开裂特征和破片形成规律.依据宏观断口特征和破片金相组织分析的结果,将管壁组织演化及裂纹形成划分为四种不同的类型,它们对应着四种不同的变形破坏机制.不同机制形成的变形破坏区之间存在\"分界面\", 共发现四种分界面.采用\"三层结构模型\"分析了受力状态与分界面的形成之间的关系.探讨了炸药、材料性能、管壁结构等因素对分界面形成规律的影响.","authors":[{"authorName":"李树奎","id":"305d4693-8845-4cb5-91ff-c8b2d98ece5d","originalAuthorName":"李树奎"},{"authorName":"杨卓越","id":"b500a88f-846c-44ae-81b1-bee698a1f712","originalAuthorName":"杨卓越"},{"authorName":"王富耻","id":"71965910-48a8-498b-bc70-0e66b4183861","originalAuthorName":"王富耻"},{"authorName":"才鸿年","id":"2fb57a22-e6c2-4fc4-a6a0-db7f7e1d140b","originalAuthorName":"才鸿年"}],"doi":"10.3969/j.issn.1004-244X.2002.04.008","fpage":"28","id":"93bf17ec-5a59-4e08-841c-dff301e8357b","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"a0096fea-87d6-4449-82c1-b3ad7653ab21","keyword":"约束爆破","originalKeyword":"约束爆破"},{"id":"faed9ac2-cae1-4cb4-b278-2e20bcc2d53a","keyword":"自由膨胀爆破","originalKeyword":"自由膨胀爆破"},{"id":"67d87faf-36bf-4a9c-b845-ffb638ea66c3","keyword":"圆管","originalKeyword":"圆管"},{"id":"dd3346cc-138c-4c7f-89be-78acc23e495d","keyword":"三层结构模型","originalKeyword":"三层结构模型"},{"id":"8e732e73-9083-4f0c-a849-9ad9767d31d5","keyword":"分界面","originalKeyword":"分界面"}],"language":"zh","publisherId":"bqclkxygc200204008","title":"爆破圆管管壁内分界面形成规律初探","volume":"25","year":"2002"},{"abstractinfo":"以扫描电子显微镜为主要检测手段,通过对过热器管壁爆口和穿孔的显微组织形态、显微氧化层特征、缺陷附近基体的形貌的观察,对该过热器管失效特性及其成因进行了推断.","authors":[{"authorName":"许宏飞","id":"466cc38e-f169-4b1f-9ef6-7323703c3b29","originalAuthorName":"许宏飞"},{"authorName":"张永信","id":"feedb467-d81e-4d11-869a-b73bbe90ea6d","originalAuthorName":"张永信"},{"authorName":"李培中","id":"6e648939-9501-431b-8989-ff98d18993f8","originalAuthorName":"李培中"},{"authorName":"王明建","id":"d51954a6-b514-47f7-881c-8f533dca73aa","originalAuthorName":"王明建"}],"doi":"10.3969/j.issn.1001-0777.2004.03.011","fpage":"39","id":"af65ee5c-a3f0-4e3c-9158-422d30c18403","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"053dd299-4fb6-410c-ad14-d53102aba8ec","keyword":"过热器管","originalKeyword":"过热器管"},{"id":"15ec6442-7521-4271-8d9a-32d07bd93dde","keyword":"SEM","originalKeyword":"SEM"},{"id":"4fc7b169-d314-4e1b-a295-b3eb0cd190f3","keyword":"氧化腐蚀","originalKeyword":"氧化腐蚀"}],"language":"zh","publisherId":"wlcs200403011","title":"过热器管壁爆口和穿孔的SEM分析","volume":"","year":"2004"}],"totalpage":201,"totalrecord":2010}