{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以SnCl4·5H2O和L-半胱氨酸为原料,通过水热法制备了直径约为1μm的均匀花状SnS2微球.利用X-射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)和氮气吸附-脱附测试(BET)对产物进行表征.电化学性能测试表明,花状SnS2微球作为锂离子电池负极材料,在1C电流密度下首次放电容量达到1379.5 mAh·g-1,30周后放电容量保持在400 mAh·g-1.","authors":[{"authorName":"周欢","id":"4eb31b17-2da8-4477-8576-59e00fd3d9ce","originalAuthorName":"周欢"},{"authorName":"柴波","id":"86e7085a-5d00-4149-ae01-d5c3aab2daca","originalAuthorName":"柴波"},{"authorName":"廖翰韬","id":"6b90beec-9396-4bd5-bddb-8232eac25751","originalAuthorName":"廖翰韬"},{"authorName":"张献旺","id":"ffc58288-506e-4bea-ba87-d0e6aafa7b84","originalAuthorName":"张献旺"}],"doi":"","fpage":"2627","id":"b8b8c704-540c-4a2c-b551-7f46b1cb70aa","issue":"12","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"dc0fdaaa-10b1-49fe-bdb4-07bc64aa0699","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"1fd64633-7eff-46cf-b73f-f0fa5275e0e7","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"dec96ebd-1f7b-4324-a53e-c6b571562e44","keyword":"SnS2","originalKeyword":"SnS2"},{"id":"8ee8a359-e32a-4b2f-8eda-cd142b1f3001","keyword":"水热法","originalKeyword":"水热法"},{"id":"761b3d6a-1de1-4ab8-bba5-9fd14362a388","keyword":"放电容量","originalKeyword":"放电容量"}],"language":"zh","publisherId":"rgjtxb98201312027","title":"花状SnS2微球锂离子电池负极材料制备及性能","volume":"42","year":"2013"},{"abstractinfo":"研究了304不锈钢冷轧薄板表面出现的线缺陷的形貌,采用光学显微镜和扫描电镜观察连铸板坯、热轧板带和冷轧板的微观组织,分析冷轧板上线缺陷的微观形貌.结果表明,冷轧304不锈钢板的线缺陷是一种微观\"沟槽\",在线缺陷沟槽边缘存在氧化膜,有的氧化膜呈多层台阶式结构,主要是铬和铁的氧化物,某些氧化膜的边缘存在Mg、Ca、Al等元素.","authors":[{"authorName":"滕涛","id":"a29c2eb5-195e-4bf4-bf50-931c20261260","originalAuthorName":"滕涛"},{"authorName":"陈银莉","id":"8d95c1de-207e-4c48-a6d4-399f3e9be603","originalAuthorName":"陈银莉"},{"authorName":"赵爱民","id":"0ac9c193-99ba-4b58-9c3d-70c55e0f76ec","originalAuthorName":"赵爱民"},{"authorName":"周欢","id":"21284dc9-89fd-4bdc-b3f5-088055c56b5b","originalAuthorName":"周欢"},{"authorName":"汪淑英","id":"03374808-f2fa-460d-9f1f-4e4e9f8b9024","originalAuthorName":"汪淑英"}],"doi":"10.3969/j.issn.1004-7638.2007.03.007","fpage":"28","id":"36c9bc8b-99f6-4136-a703-229df8ece9bd","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"4ccdd6b4-384b-4ea8-ba5d-5dff123a6b1e","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"0db40b1a-bc5c-4063-b89d-ba59310d5cb4","keyword":"冷轧薄板","originalKeyword":"冷轧薄板"},{"id":"2b8e310f-bc94-42cf-a5db-658a8dc8012d","keyword":"表面缺陷","originalKeyword":"表面缺陷"},{"id":"77f94500-1f3b-4b18-9a83-8a6c29ba9a36","keyword":"线缺陷","originalKeyword":"线缺陷"},{"id":"195da504-50da-4df9-9e97-2b18a02434da","keyword":"偏析","originalKeyword":"偏析"},{"id":"9043768d-6e54-46ec-bd85-8fee68589b4d","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"2e808091-d2d8-4ae3-9dde-f826bcf52406","keyword":"氧化膜","originalKeyword":"氧化膜"}],"language":"zh","publisherId":"gtft200703007","title":"304不锈钢冷轧薄板表面线缺陷的形貌","volume":"28","year":"2007"},{"abstractinfo":"首先通过简单沉淀法制备了薄片状纳米ZnO,再利用化学吸附作用将C60与ZnO复合得到C60/ZnO纳米复合材料.采用XRD、SEM、XPS、Ra-man、DRS、PL等技术对样品进行表征,紫外光下以亚甲基蓝(MB)作为探针分子,研究C60/ZnO纳米复合材料的光催化活性.结果表明,C60/ZnO纳米复合材料的光催化活性优于单纯的纳米ZnO,且1%(质量分数)C60/ZnO的光催化活性最高,这是由于C60具有良好的接受和传导电子的作用,抑制了光生电子和空穴的复合,从而提高了光催化效率.","authors":[{"authorName":"柴波","id":"0fe664b1-fa1b-436c-b76e-aa2c65a34a2d","originalAuthorName":"柴波"},{"authorName":"宋发坤","id":"f553bc40-ac26-4b42-a5d4-e6a20a21638c","originalAuthorName":"宋发坤"},{"authorName":"陈文杰","id":"2bf46720-e7eb-4ed1-8354-af907efab78d","originalAuthorName":"陈文杰"},{"authorName":"周欢","id":"c019aec3-4337-4b13-93a7-0ec80c5f7d24","originalAuthorName":"周欢"},{"authorName":"张芬","id":"2b38b220-83e6-431a-a156-d87d0c891fe5","originalAuthorName":"张芬"},{"authorName":"朱玉婵","id":"68a9e198-ca10-49a7-9d9e-e628e15a8f91","originalAuthorName":"朱玉婵"}],"doi":"10.3969/j.issn.1001-9731.2013.12.032","fpage":"1816","id":"e12714f4-a472-482c-9fe8-2e34789504c2","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"37deaf33-87f3-4674-b798-9bc9bd2201a9","keyword":"C60/ZnO纳米复合材料","originalKeyword":"C60/ZnO纳米复合材料"},{"id":"d71a7cd6-5c79-4b9e-92ab-4be3506c45ef","keyword":"光催化","originalKeyword":"光催化"},{"id":"b8fbb5cd-cb78-4475-bf93-22382cbd6231","keyword":"降解","originalKeyword":"降解"},{"id":"3c642e96-5d9f-4810-8a21-ba88bb643f4d","keyword":"亚甲基蓝","originalKeyword":"亚甲基蓝"}],"language":"zh","publisherId":"gncl201312032","title":"薄片状C60/ZnO纳米复合材料的制备及其光催化性能","volume":"44","year":"2013"},{"abstractinfo":"在实验室条件下研究了Ti+Nb-IF钢再结晶温度与时间以及退火制度对组织与性能的影响.实验结果表明:Ti+Nb-IF钢再结晶开始温度为680 ℃,在800 ℃退火温度下,再结晶完成时间为60 s.当退火温度为870 ℃时,综合力学性能最好,其抗拉强度为313 MPa,屈服强度为156 MPa,伸长率50.8%,n值为0.281,r值为2.07.退火织构特征表现为较强的γ纤维织构和较弱的α纤维织构,γ纤维织构主要为{111}<110>和{111}<112>,最强织构组分在{111}<112>.","authors":[{"authorName":"李姚兵","id":"82c2ccc5-4f4a-4429-b2d6-9a1a0db26716","originalAuthorName":"李姚兵"},{"authorName":"周欢","id":"6063f985-b833-4ec3-9f76-6181ce2730b0","originalAuthorName":"周欢"},{"authorName":"苏岚","id":"a9d04c05-800d-46af-b958-146ebf24cb02","originalAuthorName":"苏岚"},{"authorName":"赵爱民","id":"ad16103d-4c36-4018-9660-baa9d9b4c591","originalAuthorName":"赵爱民"}],"doi":"","fpage":"34","id":"f8b4ccb8-3e48-4414-bf62-8ae6f07438a2","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"e018172d-2f34-49e2-82cd-b8197be8b039","keyword":"Ti+Nb-IF钢","originalKeyword":"Ti+Nb-IF钢"},{"id":"3244f4ea-3be0-4b83-a843-4697953c2743","keyword":"连续退火","originalKeyword":"连续退火"},{"id":"cd72ccdb-ba3e-443f-a4cb-069ff1aebc90","keyword":"再结晶","originalKeyword":"再结晶"},{"id":"548044d2-2ac7-4ea7-9703-434b6dabf4ba","keyword":"r值","originalKeyword":"r值"},{"id":"dbed4387-fa16-4c24-9bf8-8cb13e57629f","keyword":"织构","originalKeyword":"织构"}],"language":"zh","publisherId":"gtft200901007","title":"超低碳Ti+Nb-IF钢组织与性能的研究","volume":"30","year":"2009"},{"abstractinfo":"通过热浸镀Al及高温氧化法制备出梯度防氚渗透涂层,并系统研究了稀土元素Ce对涂层微观结构及性能的影响.热浸镀Al所获得的涂层包括表面Al层和Fe-Al中间合金层,在热浸镀Al过程中,Fe-Al合金层的厚度随浸镀液中Ce含量的增加而增大,且与基体间的接触方式逐渐由平面接触转为锯齿状接触,从而提高了Fe-Al层与基体的结合强度.经过850℃条件下保温4h的扩散处理,获得了Al含量呈梯度分布的Al2O3/Al/Fe-Al涂层,这种梯度涂层有效地消除了热应力失配现象.对涂层的性能测试结果表明,浸镀液中Ce含量的添加也提高了涂层的抗热震和抗高温氧化性能.","authors":[{"authorName":"张惠","id":"5c93fd60-130d-4159-82a4-61b34fe19bf6","originalAuthorName":"张惠"},{"authorName":"周欢","id":"7db1c5f8-21b2-48fe-9dca-970c3a0995c9","originalAuthorName":"周欢"},{"authorName":"李宁","id":"aadc452b-ace6-4ecb-af9e-1e9b24948078","originalAuthorName":"李宁"},{"authorName":"柳林","id":"665786fa-a798-4419-9412-7c35cf86c413","originalAuthorName":"柳林"}],"doi":"10.3724/SP.J.1037.2011.00368","fpage":"1527","id":"26d6766a-4e69-47be-b1a2-7f7373089840","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d8272164-01da-4acb-9bc8-a0de209644bb","keyword":"防氚渗透涂层","originalKeyword":"防氚渗透涂层"},{"id":"b7c7b0fe-7da8-4fab-aedb-05a897dad3bc","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"3e7eb517-0cc3-4e4e-a574-7212066999bb","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"jsxb201112007","title":"Ce对热浸Al防氚渗透涂层结构及性能的影响","volume":"47","year":"2011"},{"abstractinfo":"采用真空非自耗电弧炉制备了不同含O量的Ti-46Al-SNb-xO(原子分数)合金铸锭,研究间隙原子O对高Nb-TiAl合金凝固组织及相转变的影响规律和作用机制.结果表明,随着O含量的增加,Ti-46Al-8Nb-xO铸锭中α2相含量逐渐增加.O的加入明显细化合金组织,并且使得组织由双态组织向全片层组织转变.间隙原子O的添加使得Ti-46Al-8Nb合金由β相领先的凝固方式转化为以α相领先的凝固方式,同时使包晶反应α+L→γ向低Al区移动,共析反应α→α2+γ向高Al区移动,扩大了α相区的范围.通过DSC分析表明,O原子可以明显提高合金的共析反应温度,但随着含量的增加作用效果逐渐减弱.","authors":[{"authorName":"吴泽恩","id":"5945d1b4-55b0-4222-86f9-8c6b38074793","originalAuthorName":"吴泽恩"},{"authorName":"胡锐","id":"58b3e0a7-6c75-4e52-82de-dbedf654ea2d","originalAuthorName":"胡锐"},{"authorName":"张铁邦","id":"a25a6c19-c4d8-4c9e-abe4-1d4e9a00cc34","originalAuthorName":"张铁邦"},{"authorName":"周欢","id":"392bccd0-5ad9-4d8a-9176-61a8b311eb0a","originalAuthorName":"周欢"},{"authorName":"寇宏超","id":"8f98cd42-3476-4a96-b6e9-f5a4fcdbc841","originalAuthorName":"寇宏超"},{"authorName":"李金山","id":"f7c23f1b-aa25-405c-835b-10cfcef3c540","originalAuthorName":"李金山"}],"doi":"10.3724/SP.J.1037.2013.00401","fpage":"1381","id":"372edd5b-5ef6-404b-8536-e55d33f25731","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"30dbff73-8af5-4be9-9561-1d18f7c5362b","keyword":"高Nb-TiAl合金","originalKeyword":"高Nb-TiAl合金"},{"id":"3db7bf98-c918-4b63-9c45-aa050d4b10f6","keyword":"间隙原子O","originalKeyword":"间隙原子O"},{"id":"749e4be6-b23b-4d17-a0ce-853507fd90d8","keyword":"凝固行为","originalKeyword":"凝固行为"},{"id":"60966fd1-f823-4505-a786-0d5b401add2c","keyword":"相转变","originalKeyword":"相转变"}],"language":"zh","publisherId":"jsxb201311016","title":"间隙原子O对高Nb-TiAl合金显微组织与相转变的影响","volume":"49","year":"2013"},{"abstractinfo":"采用XRD,SEM及TEM分析研究间隙原子C作用下Ti-46Al-8Nb-xC (x=0,0.7,1.4,2.5,原子分数,%)合金中析出相的形成规律、析出相与基体相的位向关系及其在热处理过程中的演变规律.结果表明,在C含量为1.4%和2.5%的合金中有长条状Ti2AlC析出,该析出相在铸锭制备的过程中形成,在时效热处理中尺寸、数量和分布均无明显变化,表现出较好的稳定性.不同C含量合金经固溶处理和时效后析出细小针状的Ti3AlC,该析出相从γ相中析出,并与γ相存在位向关系:{100}Ti3AlC∥{100}γ,<001>Ti3AlC∥<001>γ.延长时效时间,Ti3AlC尺寸略有增大,数量变化不明显;升高时效温度,Ti3AlC的尺寸和数量均有显著增加.","authors":[{"authorName":"周欢","id":"52d4131f-e22a-4e22-b47c-98e0df83e576","originalAuthorName":"周欢"},{"authorName":"张铁邦","id":"31ea8ee8-9df4-4be7-b109-d1d95bec504b","originalAuthorName":"张铁邦"},{"authorName":"吴泽恩","id":"b2b2dd14-b8b0-4783-813b-2d86960dab9a","originalAuthorName":"吴泽恩"},{"authorName":"胡锐","id":"dc739eb7-92c8-4b9c-aa67-64d8120f7ba5","originalAuthorName":"胡锐"},{"authorName":"寇宏超","id":"027769ea-69d2-46ce-9058-55799fe49612","originalAuthorName":"寇宏超"},{"authorName":"李金山","id":"3e9a098f-e0ee-457f-84f0-5facaa010e51","originalAuthorName":"李金山"}],"doi":"10.3724/SP.J.1037.2013.00746","fpage":"832","id":"23221fa9-62a3-4bb0-ae44-06dd90303a4b","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7c0d3117-6b73-42d8-bbac-43dbb32996b3","keyword":"间隙原子","originalKeyword":"间隙原子"},{"id":"4da17e73-0b80-44b9-8d11-1b26763e878e","keyword":"高Nb-TiAl合金","originalKeyword":"高Nb-TiAl合金"},{"id":"1dd12034-0609-477e-89bc-62ad98c84a56","keyword":"碳化物","originalKeyword":"碳化物"},{"id":"dc592964-d3fe-452f-bc64-cc5fe11c2b1c","keyword":"演化","originalKeyword":"演化"},{"id":"d5c304e8-f991-4c7b-b88d-6bc4c1f9edb1","keyword":"位向关系","originalKeyword":"位向关系"}],"language":"zh","publisherId":"jsxb201407008","title":"间隙原子C作用下TiAl合金中析出相的形成及演变规律","volume":"50","year":"2014"},{"abstractinfo":"为了满足使用客户对带钢表面粗糙度界限范围的严格要求,首先通过单因子方差分析方法确定影响镀锌产品表面粗糙度的关键要素,接着利用检验统计量F值量化研究各个关键要因的显著程度,最后以BP神经网络建立了综合考虑产品规格、轧辊特性、轧制参数等影响因素的热镀锌带钢表面粗糙度预报模型.现场实际情况表明,该预报模型偏差率在3%以内,具有较高的使用价值和推广价值.","authors":[{"authorName":"郑艳坤","id":"b60bdab0-56bb-426b-aee3-a039988a2e0f","originalAuthorName":"郑艳坤"},{"authorName":"任新意","id":"c040181f-112b-4078-a1f9-abbb98c9889c","originalAuthorName":"任新意"},{"authorName":"高慧敏","id":"5f9bbedd-8fbb-4465-826f-5617536e7175","originalAuthorName":"高慧敏"},{"authorName":"周欢","id":"8824c7c0-ecf9-42e8-90a5-b8d49d934a1a","originalAuthorName":"周欢"},{"authorName":"罗新龙","id":"7bc1c3ce-f995-4530-b4b9-b5bfb8331bc2","originalAuthorName":"罗新龙"},{"authorName":"张秋生","id":"e1e0308f-4596-4f22-b4cb-be217f8a36ac","originalAuthorName":"张秋生"}],"doi":"","fpage":"922","id":"58c4d20a-d0ce-4770-b6f1-a6000571f3d1","issue":"17","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"5b6981fa-a81b-4fb0-be26-a80274988cbf","keyword":"带钢","originalKeyword":"带钢"},{"id":"b8c31152-0733-4632-8ac5-a8427b981d42","keyword":"热镀锌","originalKeyword":"热镀锌"},{"id":"5b5ed80a-f675-4fce-b3b5-ccdb82362ed4","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"},{"id":"03a68581-6c46-4ab4-bf1e-e2a4aca9b736","keyword":"方差分析","originalKeyword":"方差分析"},{"id":"115ad261-7f5e-457e-8e53-2922b7b5bdf1","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"29f1d484-c99c-42a7-99ee-b01c0a957792","keyword":"预报模型","originalKeyword":"预报模型"}],"language":"zh","publisherId":"ddyts201617008","title":"基于BP神经网络的热镀锌产品表面粗糙度预报","volume":"35","year":"2016"},{"abstractinfo":"论述了超高周疲劳研究的背景及意义,总结了近年来超高周疲劳的研究成果包括超高周疲劳的典型特征如S-N曲线、裂纹起源、起裂机理、影响超高周疲劳行为的因素等,介绍了超高周疲劳的常用实验手段,提出了今后超高周疲劳研究的课题.","authors":[{"authorName":"关昕","id":"0ac19842-8b56-426f-8905-2388e7a25b47","originalAuthorName":"关昕"},{"authorName":"孟延军","id":"58d24d51-0717-4882-bcd8-6c2afb28dd18","originalAuthorName":"孟延军"}],"doi":"","fpage":"58","id":"e4637bac-c1ab-4be4-843c-0b2fc9d06e80","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"fc7ed857-e1c0-43de-9636-ad6114993fd8","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"10ad3e45-0a4e-4eb7-9a69-588ccacf882e","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"8217367e-ada6-4836-a546-fc39c08018ab","keyword":"疲劳裂纹萌生","originalKeyword":"疲劳裂纹萌生"},{"id":"6ef2ce57-4acd-4632-a6d5-c41726a86dba","keyword":"超声疲劳实验","originalKeyword":"超声疲劳实验"}],"language":"zh","publisherId":"gtyj200901018","title":"超高周疲劳的研究进展","volume":"37","year":"2009"},{"abstractinfo":"研究了不同温度下TC17合金低周疲劳性能和断口形貌,确定了不同温度下合金低周疲劳曲线的数学表达式,分析了合金棒材低周疲劳断口形貌特征.","authors":[{"authorName":"张翥","id":"08f7ef9f-76b4-43b4-a22c-5e4c97332d9c","originalAuthorName":"张翥"},{"authorName":"惠松骁","id":"95300b8b-74b1-4a44-9a99-d5da348d9ace","originalAuthorName":"惠松骁"},{"authorName":"路纲","id":"b4d1bce2-6620-453b-ab68-5919f79cf6a5","originalAuthorName":"路纲"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.079","fpage":"267","id":"5245b7d9-ad01-42aa-96ae-965e18ec3e68","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1ab386e7-9137-42ac-932c-aad72f085293","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"707dc835-b982-4d1a-8bac-aaf2daa1a891","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"84cd2432-b6a6-470a-93bc-ec98a918a3b5","keyword":"TC17钛合金","originalKeyword":"TC17钛合金"}],"language":"zh","publisherId":"jsxb2002z1079","title":"TC17合金低周疲劳性能与低周疲劳断口形貌","volume":"38","year":"2002"}],"totalpage":151,"totalrecord":1507}