{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用简单的葡萄糖辅助溶剂热合成法制备了碲化铅纳米棒.利用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、能谱仪(EDS)等技术手段进行材料结构和形貌表征.结果表明,产物是纯的立方相PbTe,纳米棒的直径约为50 nm,长500 nm左右.研究了反应过程的影响因素及碲化铅纳米棒的形成机制.产物的形貌受葡萄糖的量、反应时间、反应温度和聚乙烯吡咯烷酮(PVP)质量的控制,分析了形成这种结构的原因.","authors":[{"authorName":"李尔沙","id":"78d16dc3-49ac-425f-bc7f-fbbea8f243bc","originalAuthorName":"李尔沙"},{"authorName":"陈斌","id":"af80e2f0-0555-4fa8-8923-a9fc1cf6ac5a","originalAuthorName":"陈斌"},{"authorName":"冯鹏元","id":"6f84efb1-2e98-456a-9693-6471a2f1dc58","originalAuthorName":"冯鹏元"},{"authorName":"邓瑞平","id":"8b28e0aa-953e-4b55-a2cf-88e8455ab517","originalAuthorName":"邓瑞平"},{"authorName":"彭泽平","id":"fc1e2a1c-2c05-4dfe-8487-b52eff3ac20d","originalAuthorName":"彭泽平"}],"doi":"10.11944/j.issn.1000-0518.2016.05.150417","fpage":"591","id":"025cfa94-7898-4a6f-842b-40fa686bcd3a","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"c7d6e4bc-8050-45b0-ad5c-934f2d2d68bf","keyword":"碲化铅纳米棒","originalKeyword":"碲化铅纳米棒"},{"id":"f39ffad9-3bd0-432a-b791-aed3086c68ca","keyword":"葡萄糖","originalKeyword":"葡萄糖"},{"id":"cd843fee-dca9-4f61-ad5f-2f342908def2","keyword":"溶剂热合成","originalKeyword":"溶剂热合成"},{"id":"bcedcd40-f89e-4b92-a1e8-ee03a95cc4a6","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"yyhx201605013","title":"葡萄糖辅助合成碲化铅纳米棒及其表征","volume":"33","year":"2016"},{"abstractinfo":"以Pb(CH_3COO)_2·3H_2O和TeO_2为原料,硼氢化钾为还原剂,在常压下,室温至70 ℃碱性水溶液中成功地制得了PbTe纳米粉末.粉末X射线衍射分析表明制备的粉末为NaCl结构,透射电子显微镜观察表明颗粒粒径随反应温度升高而增大,从8 nm (室温) 增加至40 nm (70 ℃).能谱(EDS)分析表明产物的组成元素为Pb和Te.还对PbTe纳米颗粒的形成机理做了探讨.","authors":[{"authorName":"汪元元","id":"529e62c2-1935-4ed6-9466-d858801e9ed9","originalAuthorName":"汪元元"},{"authorName":"蔡克峰","id":"39c77ae9-6a30-4a9d-96da-df77e3b7593d","originalAuthorName":"蔡克峰"},{"authorName":"李晖","id":"53aa13ab-e8a7-4a96-9f4b-bfa38cbf28ac","originalAuthorName":"李晖"},{"authorName":"王玲","id":"3ef88f40-87b3-4cee-8d5b-bd8b8fd06688","originalAuthorName":"王玲"},{"authorName":"汪慧峰","id":"fcb4606c-76e8-479e-8176-bb4147d5932a","originalAuthorName":"汪慧峰"},{"authorName":"姚熹","id":"b27af743-9926-4fd0-b322-fc14548f43cb","originalAuthorName":"姚熹"}],"doi":"","fpage":"1102","id":"bee4929b-9926-4d41-9940-03d8d50e2930","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"dd3edb76-2d63-4769-8371-c5b66de37bb4","keyword":"碲化铅","originalKeyword":"碲化铅"},{"id":"67a3bd9d-e517-4087-8b16-7627e1eeaec3","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"6311f4f0-7dc7-4128-9c3d-ac8c938fe09c","keyword":"温和条件","originalKeyword":"温和条件"}],"language":"zh","publisherId":"xyjsclygc2009z2293","title":"温和条件下碲化铅纳米颗粒的制备","volume":"38","year":"2009"},{"abstractinfo":"本文介绍一种用电化学还原法制备氧化铅纳米棒的简单方法.实验中所用的电解液是混有氧氯化锆和三氯化钛的硝酸铅溶液,采用不锈钢片作为阴极和基底.在室温下,由直流电源供电,通过控制输出电流的大小在不锈钢片基底上沉积产物.氧化铅纳米棒的产生与电流密度有关,通过讨论,得出生成氧化铅纳米棒的最佳电流密度大小.用SEM、TEM、EDS和XRD对产物进行了表征.研究结果表明,所制备的氧化铅纳米棒是单晶结构.","authors":[{"authorName":"任鹏飞","id":"3b23283a-d27f-4e24-b0d4-2be4b24cdaf8","originalAuthorName":"任鹏飞"},{"authorName":"邹小平","id":"93a921f6-90f6-485b-9f26-02c197f62bab","originalAuthorName":"邹小平"},{"authorName":"程进","id":"c6480415-f39b-443d-b907-b36f27c72847","originalAuthorName":"程进"},{"authorName":"张红丹","id":"44213515-bf59-41a5-82e0-63a9a39a4535","originalAuthorName":"张红丹"},{"authorName":"李飞","id":"ef2dc11d-c8cb-4cd5-86c0-ee4bf74d2073","originalAuthorName":"李飞"},{"authorName":"朱光","id":"8d81c76e-9a48-4736-8c64-299ac48b9200","originalAuthorName":"朱光"},{"authorName":"王茂发","id":"ed7640af-fba4-4284-afc9-fe0708835a08","originalAuthorName":"王茂发"}],"doi":"10.3969/j.issn.1673-2812.2007.06.024","fpage":"902","id":"c56b9ae2-e7e2-4eea-a534-082447c4789c","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"dc10725b-e331-49cb-acb5-3076a8301d93","keyword":"氧化铅","originalKeyword":"氧化铅"},{"id":"cbe8f4da-18ef-42c5-b619-e7f6ca2c98b1","keyword":"纳米棒","originalKeyword":"纳米棒"},{"id":"b256b276-15e3-4b2f-ac98-86d9e6b474fd","keyword":"电化学还原","originalKeyword":"电化学还原"},{"id":"9dd58a20-3142-4e50-b035-9892f800b512","keyword":"电流密度","originalKeyword":"电流密度"}],"language":"zh","publisherId":"clkxygc200706024","title":"电化学还原法制备氧化铅纳米棒","volume":"25","year":"2007"},{"abstractinfo":"采用二次电化学沉积法制备了聚苯胺-碲化铋复合纳米棒. 首先在多孔氧化铝模板上电化学沉积聚苯胺纳米管, 以导电聚苯胺纳米管作为二级模板, 继续电化学沉积碲化铋, 获得聚苯胺包裹碲化铋纳米棒. EPMA分析了碲化铋的化学成分, SEM、TEM图像表明直径约100nm的碲化铋棒被厚约50nm的聚苯胺包裹, XRD图谱表明碲化铋在纳米棒垂直方向存在明显的{110}的织构. 二次电化学沉积法为制备该类特殊有机--无机杂化结构材料提供了新方法.
","authors":[{"authorName":"徐小川","id":"58fabf12-dd55-484f-8c78-c358e008157a","originalAuthorName":"徐小川"},{"authorName":"王春芬","id":"1e0769e3-89ec-4c29-9e6c-82a8d99f36e4","originalAuthorName":"王春芬"},{"authorName":"姚琴","id":"6176963c-2453-43e9-a09e-ac4b00bcd393","originalAuthorName":"姚琴"},{"authorName":"陈立东","id":"483054aa-4aeb-4a47-babb-52a78fdcee94","originalAuthorName":"陈立东"},{"authorName":"冯楚德","id":"5d1ed6af-5368-4309-a156-10f0a1212912","originalAuthorName":"冯楚德"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2006.01482","fpage":"1482","id":"e4140a64-44e7-49bc-9591-b575c99f2ed1","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"26ace038-219b-4a8c-8533-faeb0c3f7ba9","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"fd63d453-78c2-486a-be5d-6dee5d894008","keyword":" Bi2Te3","originalKeyword":" Bi2Te3"},{"id":"9f1e89cd-3be3-4939-ace8-1a84e20124a6","keyword":" nano composite","originalKeyword":" nano composite"}],"language":"zh","publisherId":"1000-324X_2006_6_33","title":"二次电化学沉积法制备聚苯胺-碲化铋复合纳米棒","volume":"21","year":"2006"},{"abstractinfo":"采用二次电化学沉积法制备了聚苯胺-碲化铋复合纳米棒.首先在多孔氧化铝模板上电化学沉积聚苯胺纳米管,以导电聚苯胺纳米管作为二级模板,继续电化学沉积碲化铋,获得聚苯胺包裹碲化铋纳米棒.EPMA分析了碲化铋的化学成分,SEM、TEM图像表明直径约100nm的碲化铋棒被厚约50nm的聚苯胺包裹,XRD图谱表明碲化铋在纳米棒垂直方向存在明显的{110}的织构.二次电化学沉积法为制备该类特殊有机-无机杂化结构材料提供了新方法.","authors":[{"authorName":"徐小川","id":"01388412-f5b5-4e75-b8b8-e5f3fab42cc7","originalAuthorName":"徐小川"},{"authorName":"王春芬","id":"46da40a5-9538-4974-aa50-a42a65c7dda5","originalAuthorName":"王春芬"},{"authorName":"姚琴","id":"267786df-c39c-4dd9-bb3c-412cdb632b55","originalAuthorName":"姚琴"},{"authorName":"陈立东","id":"fb9de4f1-1845-49e3-899e-ca5ed2765c38","originalAuthorName":"陈立东"},{"authorName":"冯楚德","id":"1069b15b-9c58-46e6-9f6e-a713bbd1645a","originalAuthorName":"冯楚德"}],"doi":"10.3321/j.issn:1000-324X.2006.06.033","fpage":"1482","id":"a0968706-4b56-4572-ad59-8d863785911f","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0b013530-0eea-4af4-bf2b-195f2048f199","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"f60f4241-9e8b-49b2-94e3-926922c8bf5b","keyword":"碲化铋","originalKeyword":"碲化铋"},{"id":"3db56b1f-ef26-454e-8753-010ae0f61b92","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"}],"language":"zh","publisherId":"wjclxb200606033","title":"二次电化学沉积法制备聚苯胺-碲化铋复合纳米棒","volume":"21","year":"2006"},{"abstractinfo":"以醋酸铅和硒代硫酸钠作为反应物, 蛋壳薄膜作为生物活性载体, 设计一种在生物活性材料参与下室温原位合成硒化铅纳米团簇的新方法. 利用蛋膜上特定周期性分布的大分子与无机前驱体离子之间的螯合作用和电荷作用, 引导和控制硒化铅微晶在蛋膜载体上的形成、聚集和分布, 成功制得结晶完善且在蛋膜上均匀分布的具有规则形状的硒化铅纳米团簇. 紫外-可见光谱和荧光光谱分析表明所制备的硒化铅纳米粒子具有均匀的小尺寸, 表现为明显的量子尺寸效应.","authors":[{"authorName":"王娜","id":"15c338b4-cbb5-410c-a5f6-ae66395d605e","originalAuthorName":"王娜"},{"authorName":"苏慧兰","id":"89a92d12-ebb7-419d-9bff-19303514a7c3","originalAuthorName":"苏慧兰"},{"authorName":"董群","id":"8cc968c1-ee40-4e51-af78-72a02d83435d","originalAuthorName":"董群"},{"authorName":"张荻","id":"1aec780e-5f7f-4ca2-8595-4135b78d19ac","originalAuthorName":"张荻"},{"authorName":"赖奕坚","id":"0b3c6261-9db3-45d2-ac33-8c1e688328c5","originalAuthorName":"赖奕坚"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00209","fpage":"209","id":"08973516-abd3-42dc-bb0c-d7fc184df22d","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"fc86025d-51e4-4189-852d-75114e1e7a67","keyword":"硒化铅","originalKeyword":"硒化铅"},{"id":"d9f28567-4f13-46dc-9b36-584a285f8fd7","keyword":" nanoclusters","originalKeyword":" nanoclusters"},{"id":"8bc19576-9b3a-4ed0-bd5b-f69c0465c244","keyword":" eggshell membrane","originalKeyword":" eggshell membrane"},{"id":"6a35354e-82da-426f-aeba-8f3ad9a2856b","keyword":" single crystal","originalKeyword":" single crystal"}],"language":"zh","publisherId":"1000-324X_2007_2_29","title":"室温生物诱导合成硒化铅纳米半导体","volume":"22","year":"2007"},{"abstractinfo":"以醋酸铅和硒代硫酸钠作为反应物,蛋壳薄膜作为生物活性载体,设计一种在生物活性材料参与下室温原位合成硒化铅纳米团簇的新方法.利用蛋膜上特定周期性分布的大分子与无机前驱体离子之间的螯合作用和电荷作用,引导和控制硒化铅微晶在蛋膜载体上的形成、聚集和分布,成功制得结晶完善且在蛋膜上均匀分布的具有规则形状的硒化铅纳米团簇.紫外-可见光谱和荧光光谱分析表明所制备的硒化铅纳米粒子具有均匀的小尺寸,表现为明显的量子尺寸效应.","authors":[{"authorName":"王娜","id":"9dc900c9-37ac-40dd-b4ea-ff1439c4f731","originalAuthorName":"王娜"},{"authorName":"苏慧兰","id":"5d6eb34a-4861-4e4c-98f9-e43c1bec6391","originalAuthorName":"苏慧兰"},{"authorName":"董群","id":"9b560168-488b-4cd2-965a-ef548383a2d1","originalAuthorName":"董群"},{"authorName":"张荻","id":"22a7b750-3419-45e1-9913-b6ddf87aab40","originalAuthorName":"张荻"},{"authorName":"赖奕坚","id":"7f4f348c-15f6-4163-a125-ad6c27779ff0","originalAuthorName":"赖奕坚"}],"doi":"10.3321/j.issn:1000-324X.2007.02.004","fpage":"209","id":"b2a8f61c-dfd6-4da6-bb43-9a26ef5df74a","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"06a9c6f2-378c-4cd5-b90b-5b30ff7f4bf9","keyword":"硒化铅","originalKeyword":"硒化铅"},{"id":"a6ce4d0a-a1ef-4d69-8af4-2856293e2fc5","keyword":"纳米团簇","originalKeyword":"纳米团簇"},{"id":"e30dfa22-90cf-4dfe-8d9a-b86a30494e21","keyword":"蛋膜","originalKeyword":"蛋膜"},{"id":"03110113-08d4-4184-9721-7a47cb3892d9","keyword":"生物诱导合成","originalKeyword":"生物诱导合成"}],"language":"zh","publisherId":"wjclxb200702004","title":"室温生物诱导合成硒化铅纳米半导体","volume":"22","year":"2007"},{"abstractinfo":"应用软模板法成功制备了半导体硫化铅树枝状纳米结构.此反应是在非离子表面活性剂Triton X-100存在下进行的,具有条件温和,操作简单等优点.对反应过程中硫化铅各向异性生长的影响因素进行系统的阐述,通过简单地控制反应时间及表面活性剂的加入量就可得到纳米棒、纳米分枝结构以及立方结构.考虑到形貌对半导体性能有重要影响,这一实验结果的取得应具有很高的实际应用价值.","authors":[{"authorName":"于雪莲","id":"163b654a-ed89-4291-8cdc-446b8856e440","originalAuthorName":"于雪莲"},{"authorName":"曹传堂","id":"edfabb35-592e-4208-9ede-1246d91390e1","originalAuthorName":"曹传堂"},{"authorName":"曹传宝","id":"b1b187b1-ef95-4e2e-91f7-0d3b5e2830f9","originalAuthorName":"曹传宝"},{"authorName":"朱鹤孙","id":"d721714b-b36f-47e6-9b87-269ca6a5cac4","originalAuthorName":"朱鹤孙"}],"doi":"10.3969/j.issn.1000-985X.2005.03.012","fpage":"435","id":"61c40fb7-43bd-4e19-9e54-1f2dfa41b01b","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e19a0e29-f17c-4ff8-a05d-0b0087c7fc68","keyword":"分支生长","originalKeyword":"分支生长"},{"id":"95c07a7f-aa2e-4535-b6e0-d74cf0790d85","keyword":"半导体","originalKeyword":"半导体"},{"id":"904c6aa1-5158-4aba-aa78-94c1d431f140","keyword":"纳米结构","originalKeyword":"纳米结构"},{"id":"8e202467-c4f2-452c-a579-58d8d340903d","keyword":"软模板","originalKeyword":"软模板"}],"language":"zh","publisherId":"rgjtxb98200503012","title":"表面活性剂溶液中硫化铅纳米结构的可控生长","volume":"34","year":"2005"},{"abstractinfo":"在常温常压下,将单质碲溶于酸溶液中,通过水合肼液相还原制备了纳米碲粉,利用 X 射线衍射(XRD)、扫描电子显微镜(SEM)研究了不同溶液体系及分散剂对碲粉结构及形貌的影响,分析了 Cl-在碲晶粒形成过程中的作用.结果表明,在硝酸溶液体系中,水合肼还原制备的碲呈纳米颗粒状,晶粒尺寸约20~50 nm;在 Cl-存在的混酸体系中,由于 Cl-具有配位作用和缓释剂作用,使碲晶粒长大呈纳米棒状或棱柱型,尺寸长约5~10μm,宽约300~500 nm,高浓度的 Cl-能使碲形核点增多,得到晶粒更均匀细小的纳米棒,尺寸长约200~300 nm,宽约10~20 nm;而在 Cl-体系中添加分散剂 PVP 时,碲晶粒形态较单一均匀,呈纳米棒状,晶粒尺寸长约0.5~3μm,直径约20~50 nm.","authors":[{"authorName":"苟军军","id":"bc8ecca7-71ec-4802-999f-5cfe69d5f08d","originalAuthorName":"苟军军"},{"authorName":"叶金文","id":"bb0f259b-251f-4990-9e43-9c6da62fa4e9","originalAuthorName":"叶金文"},{"authorName":"刘颖","id":"dbcd44ec-0d43-4a3f-a529-515a6110b1fd","originalAuthorName":"刘颖"},{"authorName":"何功明","id":"5a4603dd-14aa-48a6-ab6d-735f955e3342","originalAuthorName":"何功明"}],"doi":"10.3969/j.issn.1001-9731.2014.01.028","fpage":"1125","id":"89e43c10-7376-4081-8257-92fdbaa553f8","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ac32d221-377f-4fa3-9b91-6999b81e828c","keyword":"纳米碲","originalKeyword":"纳米碲"},{"id":"2500847d-5e3b-4fcf-8557-d7d3e0ed685a","keyword":"水合肼","originalKeyword":"水合肼"},{"id":"a38ecb93-5dbb-4a34-846a-b37e8311651d","keyword":"配离子","originalKeyword":"配离子"},{"id":"bd41d567-d978-4b2c-b54a-11c312444db7","keyword":"盐酸","originalKeyword":"盐酸"},{"id":"e70f18e2-c434-4e30-9e38-eb927b896588","keyword":"缓释剂","originalKeyword":"缓释剂"}],"language":"zh","publisherId":"gncl201401028","title":"不同溶剂条件下的液相还原制备纳米碲粉","volume":"","year":"2014"},{"abstractinfo":"以硝酸铅和硫代乙酰胺为前体,十二烷基苯磺酸钠(SDBS)扮演了前体和表面活性剂的双重角色,制备出硫化铅纳米带.采用透射电子显微镜、X射线衍射和光致发光对所制备的纳米带进行了表征.结果表明,中间产物PbSO4在水热条件下对PbS纳米带的进一步形成主要起到模板作用.进一步考察了纳米带形成机理,结果表明,中间产物PbSO4对表面活性剂是有制约性的,而当改变中间产物保持条件不变的情况下,模板效应失控,只能得到不规则的微晶体.实验结果表明,制备硫化铅纳米带反应速度较为缓慢,易于控制,为制备不同形貌纳米带提供了一种有效方法.","authors":[{"authorName":"马友美","id":"86576106-c5a4-4c98-b1bd-be5feb1d3ab5","originalAuthorName":"马友美"},{"authorName":"杨小平","id":"5a496b9c-75b2-4cef-bd60-2686398e5923","originalAuthorName":"杨小平"},{"authorName":"贾晓龙","id":"a977a55a-132a-489a-8104-7ae218f005a1","originalAuthorName":"贾晓龙"},{"authorName":"国丽娟","id":"c7724165-dbc5-4605-b62a-6fcc41b65821","originalAuthorName":"国丽娟"}],"doi":"10.3724/SP.J.1095.2012.00382","fpage":"557","id":"4ecf1536-8954-4266-a044-a4dbd00bacd5","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"58851c72-5a58-4ca6-9274-a187c52ac640","keyword":"微晶体","originalKeyword":"微晶体"},{"id":"42743596-e701-4cce-8e51-cd3e0f8f8e9a","keyword":"模板效应","originalKeyword":"模板效应"},{"id":"b6d788d4-d312-44d1-9d6c-a944774ee05b","keyword":"形貌控制","originalKeyword":"形貌控制"},{"id":"f6896222-eace-415f-b349-df3510c4cdad","keyword":"硫化铅纳米带","originalKeyword":"硫化铅纳米带"}],"language":"zh","publisherId":"yyhx201205012","title":"简易、可控制备硫化铅纳米带","volume":"29","year":"2012"}],"totalpage":2610,"totalrecord":26100}